Skip to main content
Log in

Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 10 August 2017

This article has been updated

Abstract

This study reports on the mid-infrared (mid-IR) photothermal response of multilayer MoS2 thin films grown on crystalline (p-type silicon and c-axis-oriented single crystal sapphire) and amorphous (Si/SiO2 and Si/SiN) substrates by pulsed laser deposition (PLD). The photothermal response of the MoS2 films is measured as the changes in the resistance of the MoS2 films when irradiated with a mid-IR (7 to 8.2 μm) source. We show that enhancing the temperature coefficient of resistance (TCR) of the MoS2 thin films is possible by controlling the film-substrate interface through a proper choice of substrate and growth conditions. The thin films grown by PLD are characterized using X-ray diffraction, Raman, atomic force microscopy, X-ray photoelectron microscopy, and transmission electron microscopy. The high-resolution transmission electron microscopy (HRTEM) images show that the MoS2 films grow on sapphire substrates in a layer-by-layer manner with misfit dislocations. The layer growth morphology is disrupted when the films are grown on substrates with a diamond cubic structure (e.g., silicon) because of twin growth formation. The growth morphology on amorphous substrates, such as Si/SiO2 or Si/SiN, is very different. The PLD-grown MoS2 films on silicon show higher TCR (−2.9% K−1 at 296 K), higher mid-IR sensitivity (ΔR/R = 5.2%), and higher responsivity (8.7 V·W–1) compared to both the PLD-grown films on other substrates and the mechanically exfoliated MoS2 flakes transferred to different substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 10 August 2017

    The correspondence author in the original version of this article was unfortunately wrongly written on page 3571 and the first page of the ESM.

References

  1. Yazyev, O. V.; Kis, A. MoS2 and semiconductors in the flatland. Mater. Today 2015, 18, 20–30.

    Article  Google Scholar 

  2. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  Google Scholar 

  3. Sorkin, V.; Pan, H.; Shi, H.; Quek, S. Y.; Zhang, Y. W. Nanoscale transition metal dichalcogenides: Structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 2014, 39, 319–367.

    Article  Google Scholar 

  4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  5. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    Article  Google Scholar 

  6. Klinovaja, J.; Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 2013, 88, 075404.

    Article  Google Scholar 

  7. Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.

    Article  Google Scholar 

  8. Serrao, C. R.; Diamond, A. M.; Hsu, S. L.; You, L.; Gadgil, S.; Clarkson, J.; Carraro, C.; Maboudian, R.; Hu, C. M.; Salahuddin, S. Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 2015, 106, 052101.

    Article  Google Scholar 

  9. El-Mahalawy, S. H.; Evans, B. L. Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. Phys. Status Solidi B 1977, 79, 713–722.

    Article  Google Scholar 

  10. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  Google Scholar 

  11. Kallatt, S.; Umesh, G.; Bhat, N.; Majumdar, K. Photoresponse of atomically thin MoS2 layers and their planar heterojunctions. Nanoscale 2016, 8, 15213–15222.

    Article  Google Scholar 

  12. Late, D. J.; Shaikh, P. A.; Khare, R.; Kashid, R. V.; Chaudhary, M.; More, M. A.; Ogale, S. B. Pulsed laser-deposited MoS2 thin films on W and Si: Field emission and photoresponse studies. ACS Appl. Mater. Interfaces 2014, 6, 15881–15888.

    Article  Google Scholar 

  13. Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thinlayered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

    Article  Google Scholar 

  14. Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

    Article  Google Scholar 

  15. Zhou, Y. L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.

    Article  Google Scholar 

  16. Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 2015, 8, 281–287.

    Article  Google Scholar 

  17. Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B.Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

    Article  Google Scholar 

  18. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

    Article  Google Scholar 

  19. Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267–2336.

    Article  Google Scholar 

  20. Rogalski, A. Infrared detectors: Status and trends. Prog. Quant. Electron. 2003, 27, 59–210.

    Article  Google Scholar 

  21. Eng, P.C.; Song, S.; Ping, B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics 2015, 4, 277–302.

    Article  Google Scholar 

  22. Kumar, R. T. R.; Karunagaran, B.; Mangalaraj, D.; Narayandass, S. K.; Manoravi, P.; Joseph, M.; Gopal, V.; Madaria, R. K.; Singh, J. P. Room temperature deposited vanadium oxide thin films for uncooled infrared detectors. Mater. Res. Bull. 2003, 38, 1235–1240.

    Article  Google Scholar 

  23. Liddiard, K. C. The active microbolometer: Anew concept in infrared detection. In Proc. SPIE 5274, Microelectronics: Design, Technology, and Packaging, Perth, Australia, 2004, pp 227–238.

    Chapter  Google Scholar 

  24. Liddiard, K. C. Thin-film resistance bolometer IR detectors—II. Infrared Phys. 1986, 26, 43–49.

    Article  Google Scholar 

  25. Bae, J. J.; Yoon, J. H.; Jeong, S.; Moon, B. H.; Han, J. T.; Jeong, H. J.; Lee, G. W.; Hwang, H. R.; Lee, Y. H.; Jeong, S. Y. et al. Sensitive photo-thermal response of graphene oxide for mid-infrared detection. Nanoscale 2015, 7, 15695–15700.

    Article  Google Scholar 

  26. Gowda, P.; Mohapatra, D. R.; Misra, A. Photoresponse of double-stacked graphene to Infrared radiation. Nanoscale 2015, 7, 15806–15813.

    Article  Google Scholar 

  27. Sassi, U.; Parret, R.; Nanot, S.; Bruna, M.; Borini, S.; De Fazio, D.; Zhao, Z.; Lidorikis, E.; Koppens, F. H. L.; Ferrari, A. C. et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 2017, 8, 14311.

    Article  Google Scholar 

  28. Leroy, J. B. Infrared spectroscopic studies of adsorption on MoS2 and WS2: Comparison between nanoparticles and bulk materials. Master’s Theses. Ball State University, Indiana, Muncie, 2011.

    Google Scholar 

  29. Daoudi, K.; Tsuchiya, T.; Yamaguchi, I.; Manabe, T.; Mizuta, S.; Kumagai, T. Microstructural and electrical properties of La0.7Ca0.3MnO3 thin films grown on SrTiO3 and LaAlO3 substrates using metal-organic deposition. J. Appl. Phys. 2005, 98, 013507.

    Article  Google Scholar 

  30. Kern, E. L.; Cain, O. J. Molybdenum disulfide electrical resistance devices. U.S. Patent 3465278 A, Sep. 2, 1969.

    Google Scholar 

  31. Boyd, I. W. Thin film growth by pulsed laser deposition. Ceram. Int. 1996, 22, 429–434.

    Article  Google Scholar 

  32. Chrisey, D. B.; Hubler, G. K. Pulsed Laser Deposition of Thin Films; Wiley: New York, 1994.

    Google Scholar 

  33. Eason, R. Pulsed Laser Deposition of Thin Films: Applications-LedGrowth of Functional Materials; Willey: New Jersey, 2007.

    Google Scholar 

  34. Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R.T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002.

    Article  Google Scholar 

  35. Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

    Article  Google Scholar 

  36. Amani, M.; Chin, M. L.; Mazzoni, A. L.; Burke, R. A.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Dubey, M. Growthsubstrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 2014, 104, 203506.

    Article  Google Scholar 

  37. Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

    Article  Google Scholar 

  38. Kranthi Kumar, V.; Dhar, S.; Choudhury, T. H.; Shivashankar, S. A.; Raghavan, S. A predictive approach to CVD of crystalline layers of TMDs: The case of MoS2. Nanoscale 2015, 7, 7802–7810.

    Article  Google Scholar 

  39. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  40. Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

    Article  Google Scholar 

  41. Beyerlein, I. J.; Zhang, X. H.; Misra, A. Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 2014, 44, 329–363.

    Article  Google Scholar 

  42. Takahashi, N.; Shiojiri, M. Stacking faults in hexagonal and rhombohedral MoS2 crystals produced by mechanical operation in relation to lubrication. Wear 1993, 167, 163–171.

    Article  Google Scholar 

  43. Ted Pella Inc. PELCO® Sapphire Substrate Discs, Technical Information [Online]. 2014; https://www.tedpella.com/vacuum_html/Sapphire_Substrate_Discs_and_Technical_ Information.htm.

    Google Scholar 

  44. Srivastava, J. K.; Prasad, M.; Wagner, J. B., Jr. Electrical conductivity of silicon dioxide thermally grown on silicon. J. Electrochem. Soc. 1985, 132, 955–963.

    Article  Google Scholar 

  45. Piccirillo, A.; Gobbi, A. L. Physical-electrical properties of silicon nitride deposited by PECVD on I II-V semiconductors J. Electrochem. Soc. 1990, 137, 3910–3917.

    Article  Google Scholar 

  46. Wieting, T. J.; Verble, J. L. Infrared and raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 1971, 3, 4286–4292.

    Article  Google Scholar 

  47. Li, W.; Birdwell, A. G.; Amani, M.; Burke, R. A.; Ling, X.; Lee, Y. H.; Liang, X. L.; Peng, L. M.; Richter, C. A.; Kong, J. et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 2014, 90, 195434.

    Article  Google Scholar 

  48. Liang, H. F. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance. AIP Adv. 2014, 4, 107131.

    Article  Google Scholar 

  49. Prashanthi, K.; Phani, A.; Thundat, T. Photothermal electrical resonance spectroscopy of physisorbed molecules on a nanowire resonator. Nano Lett. 2015, 15, 5658–5663.

    Article  Google Scholar 

  50. Shimamura, K.; Yuan, Z. S.; Shimojo, F.; Nakano, A. Effects of twins on the electronic properties of GaAs. Appl. Phys. Lett. 2013, 103, 022105.

    Article  Google Scholar 

  51. Dong, H. C.; Xiao, J. W.; Melnik, R.; Wen, B. Weak phonon scattering effect of twin boundaries on thermal transmission. Sci. Rep. 2016, 6, 19575.

    Article  Google Scholar 

  52. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  53. Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

    Google Scholar 

  54. Yu, Z. G.; Zhang, Y. W.; Yakobson, B. I. An anomalous formation pathway for dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2. Nano Lett. 2015, 15, 6855–6861.

    Article  Google Scholar 

  55. Jena, D.; Gossard, A. C.; Mishra, U. K. Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 2000, 76, 1707–1709.

    Article  Google Scholar 

  56. Esmaeili-Rad, M. R.; Salahuddin, S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 2013, 3, 2345.

    Article  Google Scholar 

  57. Man, M. K. L.; Deckoff-Jones, S.; Winchester, A.; Shi, G. S.; Gupta, G.; Mohite, A. D.; Kar, S.; Kioupakis, E.; Talapatra, S.; Dani, K. M. Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer. Sci. Rep. 2016, 6, 20890.

    Article  Google Scholar 

  58. Schlaf, R.; Lang, O.; Pettenkofer, C.; Jaegermann, W. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys. 1999, 85, 2732–2753.

    Article  Google Scholar 

  59. Hao, L. Z.; Liu, Y. J.; Gao, W.; Han, Z. D.; Xue, Q. Z.; Zeng, H. Z.; Wu, Z. P.; Zhu, J.; Zhang, W. L.Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015, 117, 114502.

    Article  Google Scholar 

  60. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

    Article  Google Scholar 

  61. Datskos, P. G.; Lavrik, N. V. Detectors—figures of merit. In Encyclopedia of Optical Engineering. Driggers, R. G., Ed.; Marcel Dekker Inc.: New York, 2003; pp 349–357.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Canada Excellence Research Chair (CERC) program (No. SF0926). The authors acknowledge the characterization facilities provided by Alberta Centre for Surface Engineering & Sciences (ACSES), Oil Sands & Coal Interfacial Engineering Facility (OSCIEF) and the Nanofab at the University of Alberta. Authors also thank Mr. Richard Hull for useful discussions on noise analysis. Discussions with Dr. Naresh Miriyala regarding substrate-film interface was illuminating. Mr. Abinash Tripathy from Indian Institute of Science, Bangalore for carrying out the PL measurement and Mr. Kalvin Schofield from (CME U of A) for IV and electrical measurements were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Thundat.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12274-017-1788-8.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, A., Dhandaria, P., Pal, S. et al. Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition. Nano Res. 10, 3571–3584 (2017). https://doi.org/10.1007/s12274-017-1568-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1568-5

Keywords

Navigation