Skip to main content
Log in

An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Accurate regulation of cellular zinc signaling is imperative to decipher underlying zinc functions and develop new therapeutic agents. However, the ability to modulate zinc in a spatiotemporal manner remains elusive. We herein report an intelligent spiropyran-upconversion (SP-UCNPs) based nanosystem that enables near-infrared (NIR) light-controlled zinc release at precise times and locations. The magnitude of zinc release can be simply manipulated by varying the duration of NIR irradiation. Moreover, the utilization of NIR light not only showed little damage to cells but also significantly improved penetration depth. By evaluating activity of a model protein, phosphatase 2A, we further validated zinc signaling activation. Importantly, our strategy may be broadly applicable to other types of metal ions, like the ubiquitous second messenger calcium. More importantly, our strategy can potentially enable the precise control of specific signaling pathways of metal ions while minimizing cellular damage, facilitating the advanced manipulation of cellular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 2013, 10, 219–226.

    Article  Google Scholar 

  2. Peng, J. J.; Xu, W.; Teoh, C. L.; Han, S. Y.; Kim, B.; Samanta, A.; Er, J. C.; Wang, L.; Yuan, L.; Liu, X. G. et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc. 2015, 137, 2336–2342.

    Article  Google Scholar 

  3. Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449–462.

    Article  Google Scholar 

  4. Chyan, W.; Zhang, D. Y.; Lippard, S. J.; Radford, R. J. Reaction-based fluorescent sensor for investigating mobile Zn2+ in mitochondria of healthy versus cancerous prostate cells. Proc. Natl. Acad. Sci. USA 2014, 111, 143–148.

    Article  Google Scholar 

  5. Que, E. L.; Domaille, D. W.; Chang, C. J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2008, 108, 1517–1549.

    Article  Google Scholar 

  6. Hambley, T. W. Metal-based therapeutics. Science 2007, 318, 1392–1393.

    Article  Google Scholar 

  7. Kepp, K. P. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 2012, 112, 5193–5239.

    Article  Google Scholar 

  8. Magda, D.; Lecane, P.; Wang, Z.; Hu, W. L.; Thiemann, P.; Ma, X.; Dranchak, P. K.; Wang, X. M.; Lynch, V.; Wei, W. H. et al. Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008, 68, 5318–5325.

    Article  Google Scholar 

  9. Andersson, D. A.; Gentry, C.; Moss, S.; Bevan, S. Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc. Natl. Acad. Sci. USA 2009, 106, 8374–8379.

    Article  Google Scholar 

  10. Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991–2994.

    Article  Google Scholar 

  11. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

    Google Scholar 

  12. Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.

    Article  Google Scholar 

  13. Zhu, Y.; Li, W. X.; Zhang, Y.; Li, J.; Liang, L.; Zhang, X. Z.; Chen, N.; Sun, Y. H.; Chen, W.; Tai, R. Z. et al. Excessive sodium ions delivered into cells by nanodiamonds: Implications for tumor therapy. Small 2012, 8, 1771–1779.

    Article  Google Scholar 

  14. Muhammad, F.; Guo, M. Y.; Qi, W. X.; Sun, F. X.; Wang, A. F.; Guo, Y. J.; Zhu, G. S. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778–8781.

    Article  Google Scholar 

  15. Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H. B.; Yep, J. I.; Zink, J. I.; Nel, A. E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134.

    Article  Google Scholar 

  16. Richter, A. P.; Brown, J. S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E. A.; Paunov, V. N.; Stoyanov, S. D.; Velev, O. D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 2015, 10, 817–823.

    Article  Google Scholar 

  17. Ostrovsky, S.; Kazimirsky, G.; Gedanken, A.; Brodie, C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009, 2, 882–890.

    Article  Google Scholar 

  18. Gorostiza, P.; Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science 2008, 322, 395–399.

    Article  Google Scholar 

  19. Basa, P. N.; Antala, S.; Dempski, R. E.; Burdette, S. C. A zinc(II) photocage based on a decarboxylation metal ion release mechanism for investigating homeostasis and biological signaling. Angew. Chem., Int. Ed. 2015, 54, 13027–13031.

    Article  Google Scholar 

  20. Shao, Q.; Xing, B. G. Photoactive molecules for applications in molecular imaging and cell biology. Chem. Soc. Rev. 2010, 39, 2835–2846.

    Article  Google Scholar 

  21. Momotake, A.; Lindegger, N.; Niggli, E.; Barsotti, R. J.; Ellis-Davies, G. C. R. The nitrodibenzofuran chromophore: A new caging group for ultra-efficient photolysis in living cells. Nat. Methods 2006, 3, 35–40.

    Article  Google Scholar 

  22. Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184.

    Article  Google Scholar 

  23. Moo, J. G. S.; Presolski, S.; Pumera, M. Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 2016, 10, 3543–3552.

    Article  Google Scholar 

  24. Liu, D. B.; Chen, W. W.; Sun, K.; Deng, K.; Zhang, W.; Wang, Z.; Jiang, X. Y. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 4103–4107.

    Article  Google Scholar 

  25. Sendai, T.; Biswas, S.; Aida, T. Photoreconfigurable supramolecular nanotube. J. Am. Chem. Soc. 2013, 135, 11509–11512.

    Article  Google Scholar 

  26. Del Canto, E.; Natali, M.; Movia, D.; Giordani, S. Photocontrolled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 6034–6043.

    Article  Google Scholar 

  27. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

    Article  Google Scholar 

  28. Zhang, Y. W.; Huang, L.; Li, Z. J.; Ma, G. L.; Zhou, Y. B.; Han, G. Illuminating cell signaling with near-infrared lightresponsive nanomaterials. ACS Nano 2016, 10, 3881–3885.

    Article  Google Scholar 

  29. Miyako, E.; Russier, J.; Mauro, M.; Cebrian, C.; Yawo, H.; Ménard-Moyon, C.; Hutchison, J. A.; Yudasaka, M.; Iijima, S.; De Cola, L. et al. Photofunctional nanomodulators for bioexcitation. Angew. Chem., Int. Ed. 2014, 53, 13121–13125.

    Article  Google Scholar 

  30. Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052.

    Article  Google Scholar 

  31. Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378.

    Article  Google Scholar 

  32. Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

    Article  Google Scholar 

  33. Gao, H. D.; Thanasekaran, P.; Chiang, C. W.; Hong, J. L.; Liu, Y. C.; Chang, Y. H.; Lee, H. M. Construction of a near-infrared-activatable enzyme platform to remotely trigger intracellular signal transduction using an upconversion nanoparticle. ACS Nano 2015, 9, 7041–7051.

    Article  Google Scholar 

  34. Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.

    Article  Google Scholar 

  35. Liu, Y. Y.; Zhang, J. W.; Zuo, C. J.; Zhang, Z.; Ni, D. L.; Zhang, C.; Wang, J.; Zhang, H.; Yao, Z. W.; Bu, W. B. Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257–3266.

    Article  Google Scholar 

  36. Liu, J. N.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 2014, 136, 9701–9709.

    Article  Google Scholar 

  37. Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179–11185.

    Google Scholar 

  38. Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dyesensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.

    Article  Google Scholar 

  39. Drees, C.; Raj, A. N.; Kurre, R.; Busch, K. B.; Haase, M.; Piehler, J. Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angew. Chem., Int. Ed. 2016, 55, 11668–11672.

    Article  Google Scholar 

  40. Li, W.; Chen, Z. W.; Zhou, L.; Li, Z. H.; Ren, J. S.; Qu, X. G. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization. J. Am. Chem. Soc. 2015, 137, 8199–8205.

    Article  Google Scholar 

  41. Sontag, J. M.; Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer's disease. Front. Mol. Neurosci. 2014, 7, 16.

    Article  Google Scholar 

  42. Gong, C. X.; Lidsky, T.; Wegiel, J.; Zuck, L.; Grundke- Igbal, L.; Iqbal, I. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain: Implications for neurofibrillary degeneration in Alzheimer’s disease. J. Biol. Chem. 2000, 275, 5535–5544.

    Article  Google Scholar 

  43. Wang, J. Z.; Grundke-Igbal, I.; Iqbal, K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 2007, 25, 59–68.

    Article  Google Scholar 

  44. Xiong, Y.; Jing, X. P.; Zhou, X. W.; Wang, X. L.; Yang, Y.; Sun, X. Y.; Qiu, M.; Cao, F. Y.; Lu, Y. M.; Liu, R. et al. Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol. Aging 2013, 34, 745–756.

    Article  Google Scholar 

  45. Xiong, Y.; Luo, D. J.; Wang, X. L.; Qiu, M.; Yang, Y.; Yan, X.; Wang, J. Z.; Ye, Q. F.; Liu, R. Zinc binds to and directly inhibits protein phosphatase 2A in vitro. Neurosci. Bull. 2015, 31, 331–337.

    Article  Google Scholar 

  46. Chen, Z. W.; Zhou, L.; Bing, W.; Zhang, Z. J.; Li, Z. H.; Ren, J. S.; Qu, X. G. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis. J. Am. Chem. Soc. 2014, 136, 7498–7504.

    Article  Google Scholar 

  47. Zhou, L.; Chen, Z. W.; Dong, K.; Yin, M. L.; Ren, J. S.; Qu, X. G. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. Adv. Mater. 2014, 26, 2424–2430.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Zhenxin Wang and Lina Ma for the cellular imaging experiments. We acknowledge financial support the National Natural Science Foundation of China (Nos. 21210002, 21431007, 21533008, and 81502277).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Kang, Jinsong Ren or Xiaogang Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, Z., Chen, Z. et al. An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. Nano Res. 10, 3068–3076 (2017). https://doi.org/10.1007/s12274-017-1522-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1522-6

Keywords

Navigation