Skip to main content
Log in

Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A TiO2 heterostructure modified with carbon nitride nanosheets (CN-NSs) has been synthesized via a direct interfacial assembly strategy. The CN-NSs, which have a unique two-dimensional structure, were favorable for supporting TiO2 nanoparticles (NPs). The uniform dispersion of TiO2 NPs on the surface of the CN-NSs creates sufficient interfacial contact at their nanojunctions, as was confirmed by electron microscopy analyses. In comparison with other reported metal oxide/CN composites, the strong interactions of the ultrathin CN-NSs layers with the TiO2 nanoparticles restrain their re-stacking, which results in a large specific surface area of 234.0 m2·g–1. The results indicate that the optimized TiO2/CN-NSs hybrid exhibits remarkably enhanced photocatalytic efficiency for dye degradation (with k of 0.167 min–1 under full spectrum) and H2 production (with apparent quantum yield = 38.4% for λ = 400 ± 15 nm monochromatic light). This can be ascribed to the improved surface area and quantum efficiency of the hybrid, with a controlled ratio that reaches the appropriate balance between producing sufficient nanojunctions and absorbing enough photons. Furthermore, based on the identification of the main active species for photodegradation, and the confirmation of active sites for H2 evolution, the charge transfer pathway across the TiO2/CN-NSs interface under simulated solar light is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852.

    Article  Google Scholar 

  2. Lang, X. J.; Ma, W. H.; Chen, C. C.; Ji, H. W.; Zhao, J. C. Selective aerobic oxidation mediated by TiO2 photocatalysis. Acc. Chem. Res. 2014, 47, 355–363.

    Article  Google Scholar 

  3. Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.

    Article  Google Scholar 

  4. Zhao, D.; Yang, C. F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew. Sust. Energ. Rev. 2016, 54, 1048–1059.

    Article  Google Scholar 

  5. Hao, R. R.; Wang, G. H.; Tang, H.; Sun, L. L.; Xu, C.; Han, D. Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B: Environ. 2016, 187, 47–58.

    Article  Google Scholar 

  6. Jiang, Z. F.; Zhu, C. Z.; Wan, W. M.; Qian, K.; Xie, J. M. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 2016, 4, 1806–1818.

    Article  Google Scholar 

  7. Sridharan, K.; Jang, E. Y.; Park, T. J. Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142–143, 718–728.

    Article  Google Scholar 

  8. Yu, J. G.; Wang, S. H.; Low, J. X.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

    Article  Google Scholar 

  9. Muñoz-Batista, M. J.; Kubacka, A.; Fernández-García, G. Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catal. Sci. Technol. 2014, 4, 2006–2015.

    Article  Google Scholar 

  10. Gu, L.; Wang, J. Y.; Zou, Z. J.; Han, X. J. Graphitic-C3N4- hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. J. Hazard. Mater. 2014, 268, 216–223.

    Article  Google Scholar 

  11. Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

    Article  Google Scholar 

  12. Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.

    Article  Google Scholar 

  13. Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Ye, L. Q.; Zan, L. Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal. Sci. Technol. 2013, 3, 1253–1260.

    Article  Google Scholar 

  14. Xu, L.; Huang, W. Q.; Wang, L. L.; Tian, Z. A.; Hu, W. Y.; Ma, Y. M.; Wang, X.; Pan, A. L.; Huang, G. F. Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: The role of oxygen. Chem. Mater. 2015, 27, 1612–1621.

    Article  Google Scholar 

  15. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.

    Article  Google Scholar 

  16. Ma, T. Y.; Tang, Y. H.; Dai, S.; Qiao, S. Z. Protonfunctionalized two-dimensional graphitic carbon nitride nanosheet: An excellent metal-/label-free biosensing platform. Small 2014, 10, 2382–2389.

    Article  Google Scholar 

  17. Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772.

    Article  Google Scholar 

  18. Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

    Article  Google Scholar 

  19. Cheng, F. X.; Wang, H. N.; Dong, X. P. The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem. Commun. 2015, 51, 7176–7179.

    Article  Google Scholar 

  20. Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

    Article  Google Scholar 

  21. Li, Y. L.; Wang, J. S.; Yang, Y. L.; Zhang, Y.; He, D.; An, Q. E.; Cao, G. Z. Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. J. Hazard. Mater. 2015, 292, 79–89.

    Article  Google Scholar 

  22. Tong, Z. W.; Yang, D.; Xiao, T. X.; Tian, Y.; Jiang, Z. Y. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 2015, 260, 117–125.

    Article  Google Scholar 

  23. Paek, S. M.; Jung, H.; Park, M.; Lee, J. K.; Choy, J. H. An inorganic nanohybrid with high specific surface area: TiO2- pillared MoS2. Chem. Mater. 2005, 17, 3492–3498.

    Article  Google Scholar 

  24. Qiu, B. C.; Li, Q. Y.; Shen, B.; Xing, M. Y.; Zhang, J. L. Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent photo-Fenton reaction and high-performance lithium storage. Appl. Catal. B: Environ. 2016, 183, 216–223.

    Article  Google Scholar 

  25. Su, D.; Wang, J. Y.; Tang, Y. P.; Liu, C.; Liu, L. F.; Han, X. J. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy. Chem. Commun. 2011, 47, 4231–4233.

    Article  Google Scholar 

  26. Wang, J. Y.; Zhao, Y. Z.; Xu, X. C.; Feng, X. L.; Yu, J. X.; Li, T. A facile interfacial assembling strategy for synthesizing yellow TiO2 flakes with a narrowed bandgap. RSC Adv. 2015, 5, 58176–58183.

    Article  Google Scholar 

  27. Wang, J. Y.; Han, X. J.; Liu, C.; Zhang, W.; Cai, R. X.; Liu, Z. H. Adjusting the crystal phase and morphology of titania via a soft chemical process. Cryst. Growth Des. 2010, 10, 2185–2191.

    Article  Google Scholar 

  28. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770.

    Article  Google Scholar 

  29. Gu, L. A.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 2013, 5, 3085–3093.

    Article  Google Scholar 

  30. Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.

    Article  Google Scholar 

  31. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595–5599.

    Article  Google Scholar 

  32. Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

    Article  Google Scholar 

  33. Feng, H. B.; Wu, Y. M.; Li, J. H. Direct exfoliation of graphite to graphene by a facile chemical approach. Small 2014, 10, 2233–2238.

    Article  Google Scholar 

  34. Feng, H. B.; Cheng, R.; Zhao, X.; Duan, X. F.; Li, J. H. A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 2013, 4, 1539.

    Article  Google Scholar 

  35. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 1985, 57, 603–619.

    Article  Google Scholar 

  36. Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324.

    Article  Google Scholar 

  37. Nguyen, P. T. M.; Fan, C. Y.; Do, D. D.; Nicholson, D. On the cavitation-like pore blocking in ink-bottle pore: Evolution of hysteresis loop with neck size. J. Phys. Chem. C 2013, 117, 5475–5484.

    Article  Google Scholar 

  38. Pandiselvi, K.; Fang, H. F.; Huang, X. B.; Wang, J. Y.; Xu, X. C.; Li, T. Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. J. Hazard. Mater. 2016, 314, 67–77.

    Article  Google Scholar 

  39. Zhang, Z. Y.; Liu, K. C.; Feng, Z. Q.; Bao, Y. N.; Dong, B. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 2016, 6, 19221.

    Article  Google Scholar 

  40. Castarlenas, S.; Rubio, C.; Mayoral, Á.; Téllez, C.; Coronas, J. Few-layer graphene by assisted-exfoliation of graphite with layered silicate. Carbon 2014, 73, 99–105.

    Article  Google Scholar 

  41. He, F.; Chen, G.; Yu, Y. G.; Hao, S.; Zhou, Y. S.; Zheng, Y. Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl. Mater. Interfaces 2014, 6, 7171–7179.

    Article  Google Scholar 

  42. Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygendoped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019.

    Article  Google Scholar 

  43. Lin, L.; Li, M.; Jiang, L. Q.; Li, Y. F.; Liu, D. J.; He, X. Q.; Cui, L. L. A novel iron (II) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium. J. Power Sources 2014, 268, 269–278.

    Article  Google Scholar 

  44. Jiang, Y. Y.; Lu, Y. Z.; Lv, X. Y.; Han, D. X.; Zhang, Q. X.; Niu, L.; Chen, W. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 2013, 3, 1263–1271.

    Article  Google Scholar 

  45. Jiang, Z. Z.; Wang, Z. B.; Chu, Y. Y.; Gu, D. M.; Yin, G. P. Ultrahigh stable carbon riveted Pt/TiO2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy Environ. Sci. 2011, 4, 728–735.

    Article  Google Scholar 

  46. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979; pp 68–69.

    Google Scholar 

  47. Cheng, H.; Feng, X. L.; Wang, D. L.; Xu, M.; Pandiselvi, K.; Wang, J. Y.; Zou, Z. J.; Li, T. Synthesis of highly stable and methanol-tolerant electrocatalyst for oxygen reduction: Co supporting on N-doped-C hybridized TiO2. Electrochim. Acta 2015, 180, 564–573.

    Article  Google Scholar 

  48. Wang, J. Y.; Liu, Z. H.; Cai, R. X. A new role for Fe3+ in TiO2 hydrosol: Accelerated photodegradation of dyes under visible light. Environ. Sci. Technol. 2008, 42, 5759–5764.

    Article  Google Scholar 

  49. Tran, T. H.; Nosaka, A. Y.; Nosaka, Y. Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J. Phys. Chem. B 2006, 110, 25525–25531.

    Article  Google Scholar 

  50. Liu, H.; Jin, Z. T.; Xu, Z. Z. Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets: A visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants. Dalton Trans. 2015, 44, 14368–14375.

    Article  Google Scholar 

  51. Hu, J. H.; Wang, L. J.; Zhang, P.; Liang, C. H.; Shao, G. S. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J. Power Sources 2016, 328, 28–36.

    Article  Google Scholar 

  52. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

    Article  Google Scholar 

  53. Jiang, X. L; Fu, X. L; Zhang, L.; Meng, S. G.; Chen, S. F. Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: Fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. J. Mater. Chem. A 2015, 3, 2271–2282.

    Article  Google Scholar 

  54. Huang, Z. A.; Sun, Q.; Lv, K. L.; Zhang, Z. H.; Li, M.; Li, B. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs. (101) facets of TiO2. Appl. Catal. B: Environ. 2015, 164, 420–427.

    Article  Google Scholar 

  55. Zhang, H.; Guo, L. H.; Zhao, L. X.; Wan, B.; Yang, Y. Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett. 2015, 6, 958–963.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Analysis and Testing Center, Huazhong University of Science and Technology for their assistance in characterization of materials. This work is supported by the National Natural Science Foundation of China (No. 21571071), Hubei Provincial Natural Science Foundation of China (No. 2015CFB313), and the Fundamental Research Funds for the Central Universities (No. 2015QN183).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyu Wang or Tianyou Peng.

Electronic supplementary material

12274_2017_1453_MOESM1_ESM.pdf

Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhuang, C., Zou, Z. et al. Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res. 10, 2193–2209 (2017). https://doi.org/10.1007/s12274-017-1453-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1453-2

Keywords

Navigation