Skip to main content
Log in

Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and Al nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/Al surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zu, P.; Tang, Z. K.; Wong, G. K. L.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 1997, 103, 459–463.

    Article  Google Scholar 

  2. Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72, 3270–3272.

    Article  Google Scholar 

  3. Lin, Y.; Li, J. T.; Xu, C. X.; Fan, X. M.; Wang, B. P. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107.

    Article  Google Scholar 

  4. Zhang, S. G.; Zhang, X. W.; Yin, Z. G.; Wang, J. X.; Dong, J. J.; Gao, H. L.; Si, F. T.; Sun, S. S.; Tao, Y. Localized surface plasmon-enhanced electroluminescence from ZnObased heterojunction light-emitting diodes. Appl. Phys. Lett. 2011, 99, 181116.

    Article  Google Scholar 

  5. Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.

    Article  Google Scholar 

  6. Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity. ACS Photonics 2015, 2, 73–77.

    Article  Google Scholar 

  7. Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F. Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.

    Article  Google Scholar 

  8. Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391.

    Article  Google Scholar 

  9. Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S.-H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.

    Article  Google Scholar 

  10. Despoja, V.; Novko, D.; Dekanic, K.; Šunjic, M.; Marušic, L. Two-dimensional and p plasmon spectra in pristine and doped graphene. Phys. Rev. B 2013, 87, 075447.

    Article  Google Scholar 

  11. Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.

    Article  Google Scholar 

  12. Li, J. T.; Xu, C. X.; Nan, H. Y.; Jiang, M. M.; Gao, G. Y.; Lin, Y.; Dai, J.; Zhu, G. Y.; Ni, Z. H.; Wang, S. F. et al. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS Appl. Mater. Interfaces 2014, 6, 10469–10475.

    Article  Google Scholar 

  13. Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.

    Article  Google Scholar 

  14. Liu, R.; Fu, X.-W.; Meng, J.; Bie, Y.-Q.; Yu, D.-P.; Liao, Z.-M. Graphene plasmon enhanced photoluminescence in ZnO microwires. Nanoscale 2013, 5, 5294–5298.

    Article  Google Scholar 

  15. West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.

    Article  Google Scholar 

  16. Xu, C. X.; Sun, X. W.; Chen, B. J. Field emission from gallium-doped zinc oxide nanofiber array. Appl. Phys. Lett. 2004, 84, 1540–1542.

    Article  Google Scholar 

  17. Dai, J.; Xu, C. X.; Zheng, K.; Lv, C. G.; Cui, Y. P. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009, 95, 241110.

    Article  Google Scholar 

  18. Zhu, G. D.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P. Twophoton excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle. Appl. Phys. Lett. 2009, 94, 051106.

    Article  Google Scholar 

  19. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  20. Berman, O. L.; Kezerashvili, R. Y.; Lozovik, Y. E. Graphene nanoribbon based spaser. Phys. Rev. B 2013, 88, 235424.

    Article  Google Scholar 

  21. Rupasinghe, C.; Rukhlenko, I. D.; Premaratne, M. Spaser made of graphene and carbon nanotubes. ACS Nano 2014, 8, 2431–2438.

    Article  Google Scholar 

  22. Xu, C. K.; Xu, G. D.; Liu, Y. K.; Wang, G. H. A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 2002, 122, 175–179.

    Article  Google Scholar 

  23. Xu, C. X.; Sun, X. W. Characteristics and growth mechanism of ZnO whiskers fabricated by vapor phase transport. Jpn. J. Appl. Phys. 2003, 42, 4949.

    Article  Google Scholar 

  24. Xu, C. X.; Zhu, G. P.; Li, X.; Yang, Y.; Tan, S. T.; Sun, X. W.; Lincoln, C.; Smith, T. A. Growth and spectral analysis of ZnO nanotubes. J. Appl. Phys. 2008, 103, 094303.

    Article  Google Scholar 

  25. Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.

    Article  Google Scholar 

  26. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  27. Dai, J.; Xu, C. X.; Nakamura, T.; Wang, Y. Y.; Li, J. T.; Lin, Y. Electron–hole plasma induced band gap renormalization in ZnO microlaser cavities. Opt. Express 2014, 22, 28831–28837.

    Article  Google Scholar 

  28. Dai, J.; Xu, C. X.; Wu, P.; Guo, J. Y.; Li, Z. H.; Shi, Z. L. Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature. Appl. Phys. Lett. 2010, 97, 011101.

    Article  Google Scholar 

  29. Arai, N.; Takeda, J.; Ko, H.-J.; Yao, T. Dynamics of highdensity excitons and electron–hole plasma in ZnO epitaxial thin films. J. Lumin. 2006, 119-120, 346–349.

    Article  Google Scholar 

  30. Mitsubori, S.; Katayama, I.; Lee, S. H.; Yao, T.; Takeda, J. Ultrafast lasing due to electron–hole plasma in ZnO nanomultipods. J. Phys.: Condens. Matter 2009, 21, 064211.

    Google Scholar 

  31. Luo, X. G.; Qiu, T.; Lu, W. B.; Ni, Z. H. Plasmons in graphene: Recent progress and applications. Mater. Sci. Eng. R: Rep. 2013, 74, 351–376.

    Article  Google Scholar 

  32. Jiang, M. M.; Li, J. T.; Xu, C. X.; Wang, S. P.; Shan, C. X.; Xuan, B.; Ning, Y. Q.; Shen, D. Z. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Opt. Express 2014, 22, 23836–23850.

    Article  Google Scholar 

  33. Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733.

    Article  Google Scholar 

  34. Skriver, H. L.; Rosengaard, N. M. Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46, 7157–7168.

    Article  Google Scholar 

  35. Wang, J.; Zheng, C. C.; Ning, J. Q.; Zhang, L. X.; Li, W.; Ni, Z. H.; Chen, Y.; Wang, J. N.; Xu, S. J. Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure. Sci. Rep. 2015, 5, 7687.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Zhenhua Ni and Dr. Haiyan Nan from Department of Physics, Southeast University for their warm help in the material synthesis. This work was supported by the National Basic Research Program of China (No. 2013CB932903), National Natural Science Foundation of China (Nos. 61475035 and 61275054), the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. 2011KFJ004), the General Project of Education Department of Hunan Province (No. 15C0251), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Qin, F., Lu, J. et al. Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Res. 10, 1996–2004 (2017). https://doi.org/10.1007/s12274-016-1387-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1387-0

Keywords

Navigation