Skip to main content
Log in

Thermoelectric characteristics of nanocomposites made of HgSe and Ag nanoparticles for flexible thermoelectric devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We synthesized thermoelectric nanocomposites by mixing HgSe nanoparticles (NPs) and Ag NPs in a solution and investigated the thermoelectric properties of the nanocomposite thin films on flexible plastic substrates. The X-ray diffraction patterns and the X-ray photoelectron spectra of the nanocomposites demonstrate that cation-exchange reactions occurred spontaneously in the mixed solution of HgSe and Ag NPs and that the HgSe NPs were completely converted to Ag2Se when the Ag NP content was 20 vol.%. The maximum power factor and the thermoelectric figure of merit were obtained as 75 μW/mK2 and 0.043 at 300 K, respectively, when the Ag NP content was 10 vol.%, which is 100 times higher than that of HgSe NP thin films. In addition, the mechanical stability of the thermoelectric nanocomposite film was confirmed through repeated bending tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowe, D. M. Thermoelectrics Handbook: Macro to Nano; CRC Press: Boca Raton, FL,USA, 2006.

  2. Zhang, Q. H.; Ai, X.; Wang, L. J.; Chang, Y. X.; Luo, W.; Jiang, W.; Chen, L. D. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 2015, 25, 966–976.

    Article  Google Scholar 

  3. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

    Article  Google Scholar 

  4. Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2013, 2, 190–212.

    Article  Google Scholar 

  5. Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 1997, 7, 85–90.

    Article  Google Scholar 

  6. Wang, H.; Li, J. F.; Nan, C. W.; Zhou, M.; Liu, W. S.; Zhang, B. P.; Kit, T. High-performance Ag0.8Pb18+x SbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl. Phys. Lett. 2006, 88, 092104.

    Article  Google Scholar 

  7. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.

    Article  Google Scholar 

  8. Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 2006, 96, 045901.

    Article  Google Scholar 

  9. Zhou, X. Y.; Wang, G. Y.; Zhang, L.; Chi, H.; Su, X. L.; Sakamoto, J.; Uher, C. Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J. Mater. Chem. 2012, 22, 2958–2964.

    Article  Google Scholar 

  10. Yun, J.; Cho, K.; Kim, S. Dynamic electrical characteristics of low-power ring oscillators constructed with inorganic nanoparticles on flexible plastics. ACS Appl. Mater. Interfaces 2012, 4, 5839–5843.

    Article  Google Scholar 

  11. Ibáñez, M.; Luo, Z. S., Genç, A.; Piveteau, L.; Ortega, S.; Cadavid, D.; Dobrozhan, O.; Liu, Y.; Nachtegaal, M.; Zebarjadi, M. et al. High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat. Commun. 2016, 7, 10766.

    Article  Google Scholar 

  12. Sun, Y. M.; Fang, H. Y.; Pan, L. J.; Han, M.; Xu, S.; Wang, X. W.; Xu, B.; Wu, Y. Impact of surface-bound small molecules on the thermoelectric property of self-assembled Ag2Te nanocrystal thin films. Nano Lett. 2015, 15, 3748–3756.

    Article  Google Scholar 

  13. Yun, J.; Cho, K.; Park, B.; Kang, H. C.; Ju, B. K.; Kim, S. Optical heating of ink-jet printable Ag and Ag–Cu nanoparticles. Jpn. J. Appl. Phys. 2008, 47, 5070–5075.

    Article  Google Scholar 

  14. Choi, J.; Cho, K.; Kim, S. Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air. Nanotechnology 2013, 24, 455402.

    Article  Google Scholar 

  15. Dames, C. Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transfer 2013, 16, 7–49.

    Article  Google Scholar 

  16. Liu, Y. Q.; Tainoff, D.; Boukhari, M.; Richard, J.; Barski, A.; Bayle-Guillemaud, P.; Hadji, E.; Bourgeois, O. Sensitive 3-omega measurements on epitaxial thermoelectric thin films. IOP Conf. Ser.: Mater. Sci. Eng. 2014, 68, 012005.

    Article  Google Scholar 

  17. Myung, Y.; Im, H. S.; Kim, C. H.; Jung, C. S.; Cho, Y. J.; Jang, D. M.; Kim, H. S.; Back, S. H.; Park, J. Photo-induced cation exchange reaction of germanium chalcogenide nanocrystals synthesized using gas-phase laser photolysis reaction. Chem. Commun. 2013, 49, 187–189.

    Article  Google Scholar 

  18. Luo, Y. R. Bond dissociation energies. In CRC Handbook of Chemistry and Physics, 89th ed.; CRC Press: BocaRaton, FL,USA, 2009.

  19. Zhu, C. N.; Jiang, P.; Zhang, Z. L.; Zhu, D. L.; Tian, Z. Q.; Pang, D. W. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 2013, 5, 1186–1189.

    Article  Google Scholar 

  20. Radnik, J.; Mohr, C.; Claus, P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys. Chem. Chem. Phys. 2003, 5, 172–177.

    Article  Google Scholar 

  21. Martin, J.; Wang, L.; Chen, L. D.; Nolas, G. S. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 2009, 79, 115311.

    Article  Google Scholar 

  22. Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J. D.; Ortega, S.; Cadavid, D.; Morante, J. R.; Arbiol, J.; Cabot, A. Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe–PbS thermoelectric properties. ACS Nano 2013, 7, 2573–2586.

    Article  Google Scholar 

  23. Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970–3980.

    Article  Google Scholar 

  24. Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C.-I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. Highperformance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

    Article  Google Scholar 

  25. Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPb m SbTe2+ m : Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.

    Article  Google Scholar 

  26. Kim, S. I.; Lee, K. H.; Mum, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109–114.

    Article  Google Scholar 

  27. Ibáñez, M.; Zamani, R.; Li, W. H.; Cadavid, D.; Gorsse, S.; Katcho, N. A.; Shavel, A.; López, A. M.; Morante, J. R.; Arbiol, J. et al. Crystallographic control at the nanoscale to enhance functionality: Polytypic Cu2GeSe3 nanoparticles as thermoelectric materials. Chem. Mater. 2012, 24, 4615–4622.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mid-career Researcher Program (No. NRF-2013R1A2A1A03070750) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology, the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. NRF-2015R1A5A7037674), and the Brain Korea 21 Plus Project in 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoungah Cho or Sangsig Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Cho, K., Park, Y. et al. Thermoelectric characteristics of nanocomposites made of HgSe and Ag nanoparticles for flexible thermoelectric devices. Nano Res. 10, 683–689 (2017). https://doi.org/10.1007/s12274-016-1327-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1327-z

Keywords

Navigation