Skip to main content
Log in

Shape design of cerium oxide nanoparticles for enhancement of enzyme mimetic activity in therapeutic applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cerium oxide nanoparticles (CONPs), widely used in catalytic applications owing to their robust redox reaction, are now being considered in therapeutic applications based on their enzyme mimetic properties such as catalase and super oxide dismutase (SOD) mimetic activities. In therapeutic applications, the emerging demand for CONPs with low cytotoxicity, high cost efficiency, and high enzyme mimetic capability necessitates the exploration of alternative synthesis and effective material design. This study presents a room temperature aqueous synthesis for low-cost production of shape-selective CONPs without potentially harmful organic substances, and additionally, investigates cell viability and catalase and SOD mimetic activities. This synthesis, at room temperature, produced CONPs with particular planes: {111}/{100} nanopolyhedra, {100} nano/submicron cubes, and {111}/{100} nanorods that grew in [110] longitudinal direction. Enzymatic activity assays indicated that nanopolyhedra with a high concentration of Ce4+ ions promoted catalase mimetic activity, while nanocubes and nanorods with high Ce3+ ion concentrations enhanced SOD mimetic activity. This is the first study indicating that shape and facet configuration design of CONPs, coupled with the retention of dominant, specific Ce valence states, potentiates enzyme mimetic activities. These findings may be utilized for CONP design aimed at enhancing enzyme mimetic activities in therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

    Article  Google Scholar 

  2. Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

    Google Scholar 

  3. Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

    Article  Google Scholar 

  4. Li, Y. Y.; He, X.; Yin, J. J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832–1035.

    Article  Google Scholar 

  5. Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H. B.; Yeh, J. I.; Zink, J. I.; Nel, A. E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134.

    Article  Google Scholar 

  6. Xu, M. S.; Fujita, D.; Kajiwara, S.; Minowa, T.; Li, X. L.; Takemura, T.; Iwai, H.; Hanagata, N. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials 2010, 31, 8022–8031.

    Article  Google Scholar 

  7. Batinic-Haberle, I.; Tovmasyan, A.; Roberts, E. R. H.; Vujaskovic, Z.; Leong, K. W.; Spasojevic, I. SOD therapeutics: Latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid. Redox Signal. 2014, 20, 2372–2415.

    Article  Google Scholar 

  8. Chen, J. P.; Patil, S.; Seal, S.; McGinnis, J. F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 2006, 1, 142–150.

    Article  Google Scholar 

  9. Heckman, K. L.; DeCoteau, W.; Estevez, A.; Reed, K. J.; Costanzo, W.; Sanford, D.; Leiter, J. C.; Clauss, J.; Knapp, K.; Gomez, C. et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 2013, 7, 10582–10596.

    Article  Google Scholar 

  10. Pagliari, F.; Mandoli, C.; Forte, G.; Magnani, E.; Pagliari, S.; Nardone, G.; Licoccia, S.; Minieri, M.; Di Nardo, P.; Traversa, E. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 2012, 6, 3767–3775.

    Article  Google Scholar 

  11. Wason, M. S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C. H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 2013, 9, 558–569.

    Google Scholar 

  12. Celardo, I.; De Nicola, M.; Mandoli, C.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 2011, 5, 4537–4549.

    Article  Google Scholar 

  13. Zhang, D. S.; Du, X. J.; Shi, L. Y.; Gao, R. H. Shapecontrolled synthesis and catalytic application of ceria nanomaterials. Dalton Trans. 2012, 41, 14455–14475.

    Article  Google Scholar 

  14. Conesa, J. C. Computer modeling of surfaces and defects on cerium dioxide. Surf. Sci. 1995, 339, 337–352.

    Article  Google Scholar 

  15. Jiang, Y.; Adams, J. B.; van Schilfgaarde, M. Densityfunctional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. J. Chem. Phys. 2005, 123, 064701.

    Article  Google Scholar 

  16. Sayle, T. X. T.; Parker, S. C.; Catlow, C. R. A. The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide. Surf. Sci. 1994, 316, 329–336.

    Article  Google Scholar 

  17. Zhang, J.; Kumagai, H.; Yamamura, K.; Ohara, S.; Takami, S.; Morikawa, A.; Shinjoh, H.; Kaneko, K.; Adschiri, T.; Suda, A. Extra-low-temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets. Nano Lett. 2011, 11, 361–364.

    Article  Google Scholar 

  18. Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385.

    Article  Google Scholar 

  19. Wu, Z. L.; Li, M. J.; Overbury, S. H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 2012, 285, 61–73.

    Article  Google Scholar 

  20. Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

    Article  Google Scholar 

  21. Agarwal, S.; Lefferts, L.; Mojet, B. L.; Ligthart, D. A. J.; Hensen, E. J. M.; Mitchell, D. R. G.; Erasmus, W. J.; Anderson, B. G.; Olivier, E. J.; Neethling, J. H. et al. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. ChemSusChem 2013, 6, 1898–1906.

    Article  Google Scholar 

  22. Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem., Int. Ed. 2008, 47, 2884–2887.

    Article  Google Scholar 

  23. Wang, S. P.; Zhao, L. F.; Wang, W.; Zhao, Y. J.; Zhang, G. L.; Ma, X. B.; Gong, J. L. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale 2013, 5, 5582–5588.

    Article  Google Scholar 

  24. Zhang, Y.; Zhou, K. B.; Zhai, Y. W.; Qin, F.; Pan, L. L.; Yao, X. Crystal plane effects of nano-CeO2 on its antioxidant activity. RSC Adv. 2014, 4, 50325–50330.

    Article  Google Scholar 

  25. Pan, C. S.; Zhang, D. S.; Shi, L. Y.; Fang, J. H. Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. Eur. J. Inorg. Chem. 2008, 15, 2429–2436.

    Article  Google Scholar 

  26. Xu, J. X.; Li, G. S.; Li, L. P. CeO2 nanocrystals: Seed-mediated synthesis and size control. Mater. Res. Bull. 2008, 43, 990–995.

    Article  Google Scholar 

  27. Chen, H. I.; Chang, H. Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram. Int. 2005, 31, 795–802.

    Article  Google Scholar 

  28. Chang, H. Y.; Chen, H. I. Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique. J. Cryst. Growth. 2005, 283, 457–468.

    Article  Google Scholar 

  29. Vantomme, A.; Yuan, Z. Y.; Du, G. H.; Su, B. L. Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir 2005, 21, 1132–1135.

    Article  Google Scholar 

  30. Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 2006, 128, 9330–9331.

    Article  Google Scholar 

  31. Zhang, J.; Ohara, S.; Umetsu, M.; Naka, T.; Hatakeyama, Y.; Adschiri, T. Colloidal ceria nanocrystals: A tailor-made crystal morphology in supercritical water. Adv. Mater. 2007, 19, 203–206.

    Article  Google Scholar 

  32. Wu, Q.; Zhang, F.; Xiao, P.; Tao, H. S.; Wang, X. Z.; Hu, Z.; Lü, Y. N. Great influence of anions for controllable synthesis of CeO2 nanostructures: From nanorods to nanocubes. J. Phys. Chem. C 2008, 112, 17076–17080.

    Article  Google Scholar 

  33. Du, N.; Zhang, H.; Chen, B. D.; Ma, X. Y.; Yang, D. R. Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low Temperature. J. Phys. Chem. C 2007, 111, 12677–12680.

    Article  Google Scholar 

  34. Sreeremya, T. S.; Krishnan, A.; Remani, K. C.; Patil, K. R.; Brougham, D. F.; Ghosh, S. Shape-selective oriented cerium oxide nanocrystals permit assessment of the effect of the exposed facets on catalytic activity and oxygen storage capacity. ACS Appl. Mater. Interfaces 2015, 7, 8545–8555.

    Article  Google Scholar 

  35. Maitarad, P.; Han, J.; Zhang, D. S.; Shi, L. Y.; Namuangruk, S.; Rungrotmongkol, T. Structure–activity relationships of NiO on CeO2 nanorods for the selective catalytic reduction of NO with NH3: Experimental and DFT studies. J. Phys. Chem. C 2014, 118, 9612–9620.

    Article  Google Scholar 

  36. Tsunekawa, S.; Sivamohan, R.; Ito, S.; Kasuya, A.; Fukuda, T. Structural study on monosize CeO2–x nano-particles. Nanostruct. Mater. 1999, 11, 141–147.

    Article  Google Scholar 

  37. Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113.

    Article  Google Scholar 

  38. Holgado, J. P.; Munuera, G.; Espinós, J. P.; González-Elipe, A. R. XPS study of oxidation processes of CeOx defective layers. Appl. Surf. Sci. 2000, 158, 164–171.

    Article  Google Scholar 

  39. Chen, L.; Fleming, P.; Morris, V.; Holmes, J. D.; Morris, M. A. Size-related lattice parameter changes and surface defects in ceria nanocrystals. J. Phys. Chem. C 2010, 114, 12909–12919.

    Article  Google Scholar 

  40. Naganuma, T.; Traversa, E. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers. Nanoscale 2012, 4, 4950–4953.

    Article  Google Scholar 

  41. Naganuma, T.; Traversa, E. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates. Nanoscale 2014, 6, 6637–6645.

    Article  Google Scholar 

  42. Naganuma, T.; Traversa, E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials 2014, 35, 4441–4453.

    Article  Google Scholar 

  43. Vayssieres, L. On the effect of nanoparticle size on water-oxide interfacial chemistry. J. Phys. Chem. C 2009, 113, 4733–4736.

    Article  Google Scholar 

  44. Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223–232.

    Article  Google Scholar 

  45. Chueh, W. C.; McDaniel, A. H.; Grass, M. E.; Hao, Y.; Jabeen, N.; Liu, Z.; Haile, S. M.; McCarty, K. F.; Bluhm, H.; Gabaly, F. E. Highly enhanced concentration and stability of reactive Ce3+ on doped CeO2 surface revealed in operando. Chem. Mater. 2012, 24, 1876–1882.

    Article  Google Scholar 

  46. Sayle, T. X. T.; Inkson, B. J.; Karakoti, A.; Kumar, A.; Molinari, M.; Möbus, G.; Parker, S. C.; Seal, S.; Sayle, D. C. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment. Nanoscale 2011, 3, 1823–1837.

    Article  Google Scholar 

  47. Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman, I. R. Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 2002, 80, 127–129.

    Article  Google Scholar 

  48. Wu, L. J.; Wiesmann, H. J.; Moodenbaugh, A. R.; Klie, R. F.; Zhu, Y. M.; Welch, D. O.; Suenaga, M. Oxidation state and lattice expansion of CeO2–x nanoparticles as a function of particle size. Phys. Rev. B 2004, 69, 125415.

    Article  Google Scholar 

  49. Hailstone, R. K.; DiFrancesco, A. G.; Leong, J. G.; Allston, T. D.; Reed, K. J. A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. J. Phys. Chem. C 2009, 113, 15155–15159.

    Article  Google Scholar 

  50. Paun, C.; Safonova, O. V.; Szlachetko, J.; Abdala, P. M.; Nachtegaal, M.; Sa, J.; Kleymenov, E.; Cervellino, A.; Krumeich, F.; van Bokhoven, J. A. Polyhedral CeO2 nanoparticles: Size-dependent geometrical and electronic structure. J. Phys. Chem. C 2012, 116, 7312–7317.

    Article  Google Scholar 

  51. Torrente-Murcianoa, L.; Gilbank, A.; Puertolas, B.; Garcia, T.; Solsona, B.; Chadwick, D. Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Appl. Catal. B 2013, 132–133, 116–122.

    Article  Google Scholar 

  52. Tana; Zhang, M. L.; Li, J.; Li, H. J.; Li, Y.; Shen, W. J. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods and nanoparticles. Catal. Today 2009, 148, 179–183.

    Article  Google Scholar 

  53. Ho, C. M.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S. Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem. Mater. 2005, 17, 4514–4522.

    Article  Google Scholar 

  54. Tang, B.; Zhuo, L. H.; Ge, J. C.; Wang, G. L.; Shi, Z. Q.; Niu, J. Y. A surfactant-free route to single-crystalline CeO2 nanowires. Chem. Commun. 2005, 3565–3567.

    Google Scholar 

  55. Bugayeva, N.; Robinson, J. Synthesis of hydrated CeO2 nanowires and nanoneedles. Mater. Sci. Technol. 2007, 23, 237–241.

    Article  Google Scholar 

  56. Mandoli, C.; Pagliari, F.; Pagliari, S.; Forte, G.; Di Nardo, P.; Licoccia, S.; Traversa, E. Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv. Funct. Mater. 2010, 20, 1617–1624.

    Article  Google Scholar 

  57. Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

    Article  Google Scholar 

  58. LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    Article  Google Scholar 

  59. Djuričić, B.; Pickering, S. Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceram. Soc. 1999, 19, 1925–1934.

    Article  Google Scholar 

  60. Vincent, A.; Inerbaev, T. M.; Babu, S.; Karakoti, A. S.; Self, W. T.; Masunov, A. E.; Seal, S. Tuning hydrated nanoceria surfaces: Experimental/theoretical investigations of ion exchange and implications in organic and inorganic interactions. Langmuir 2010, 26, 7188–7198.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan under the auspices of the WPI Program. Technical support by NIMS Molecule & Material Synthesis Platform in “Nanotechnology Platform Project” operated by MEXT is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamaki Naganuma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naganuma, T. Shape design of cerium oxide nanoparticles for enhancement of enzyme mimetic activity in therapeutic applications. Nano Res. 10, 199–217 (2017). https://doi.org/10.1007/s12274-016-1278-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1278-4

Keywords

Navigation