Skip to main content
Log in

Nanowatt power operation of silicon nanowire NAND logic gates on bendable substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel construction of silicon nanowire (SiNW) negative-AND (NAND) logic gates on bendable plastic substrates and describe their electrical characteristics. The NAND logic gates with SiNW channels are capable of operating with a supply voltage as low as 0.8 V, with switching and standby power consumption of approximately 1.1 and 0.068 nW, respectively. Superior electrical characteristics of each SiNW transistor, including steep subthreshold slopes, high I on/off ratio, and symmetrical threshold voltages, are the major factors that enable nanowatt-range power operation of the logic gates. Moreover, the mechanical bendability of the logic gates indicates that they have good and stable fatigue properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H.-S.; Choi, W. M.; Kim, D.-H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem., Int. Ed. 2008, 47, 5524–5542.

    Article  Google Scholar 

  2. Xu, J. M. Plastic electronics and future trends in microelectronics. Synth. Met. 2000, 115, 1–3.

    Article  Google Scholar 

  3. Dahiya, R. S.; Gennaro, S. Bendable ultra-thin chips on flexible foils. IEEE Sens. J. 2013, 13, 4030–4037.

    Article  Google Scholar 

  4. Kim, D.-H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.

    Article  Google Scholar 

  5. Kim, H. S.; Won, S. M.; Ha, Y.-G.; Ahn, J. H.; Facchetti, A.; Marks, T. J.; Rogers, J. A. Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates. Appl. Phys. Lett. 2009, 95, 183504.

    Article  Google Scholar 

  6. Svensson, J.; Dey, A. W.; Jacobsson, D.; Wernersson, L.-E. III–V nanowire complementary metal–oxide semiconductor transistors monolithically integrated on Si. Nano Lett. 2015, 15, 7898-7904.

    Article  Google Scholar 

  7. Liu, Y.; Zhou, H. L.; Cheng, R.; Yu, W.; Huang, Y.; Duan, X. F. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 2014, 14, 1413–1418.

    Article  Google Scholar 

  8. Baby, T. T.; Garlapati, S. K.; Dehm, S.; Häming, M.; Kruk, R.; Hahn, H.; Dasgupta, S. A general route toward complete room temperature processing of printed and high performance oxide electronics. ACS Nano 2015, 9, 3075–3083.

    Article  Google Scholar 

  9. Geier, M. L.; Prabhumirashi, P. L.; McMorrow, J. J.; Xu, W. C.; Seo, J.-W. T.; Everaerts, K.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. Nano Lett. 2013, 13, 4810–4814.

    Article  Google Scholar 

  10. Kim, D. H.; Ahn, J. H.; Kim, H. S.; Lee, K. J.; Kim, T. H.; Yu, C. J.; Nuzzo, R. G.; Rogers, J. A. Complementary logic gates and ring oscillators on plastic substrates by use of printed ribbons of single-crystalline silicon. IEEE Electron Dev. Lett. 2008, 29, 73–76.

    Article  Google Scholar 

  11. Ahn, J. H.; Kim, H. S.; Menard, E.; Lee, K. J.; Zhu, Z. T.; Kim, D. H.; Nuzzo, R. G.; Rogers, J. A.; Amlani, I.; Kushner, V. et al. Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 2007, 90, 213501.

    Article  Google Scholar 

  12. Lee, C. H.; Kim, D. R.; Zheng, X. L. Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proc. Natl. Acad. Sci. USA 2010, 107, 9950–9955.

    Article  Google Scholar 

  13. Appenzeller, J.; Knoch, J.; Björk, M. T.; Riel, H.; Schmid, H.; Riess, W. Toward nanowire electronics. IEEE T. Electron Dev. 2008, 55, 2827–2845.

    Article  Google Scholar 

  14. Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE T. Electron Dev. 2008, 55, 2859–2876.

    Article  Google Scholar 

  15. Sheriff, B. A.; Wang, D. W.; Heath, J. R.; Kurtin, J. N. Complementary symmetry nanowire logic circuits: Experimental demonstrations and in silico optimizations. ACS Nano 2008, 2, 1789–1798.

    Article  Google Scholar 

  16. Chung, E.-A.; Koo, J.; Lee, M.; Jeong, D.-Y.; Kim, S. Enhancement-mode silicon nanowire field-effect transistors on plastic substrates. Small 2009, 5, 1821–1824.

    Article  Google Scholar 

  17. Lee, M.; Jeon, Y.; Moon, T.; Kim, S. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS inverters on plastic. ACS Nano 2011, 5, 2629–2636.

    Article  Google Scholar 

  18. Tanaka, T. Novel parameter extraction method for low field drain current of nano-scaled MOSFETs. In Proceedings of the 2007 IEEE International Conference on Microelectronic Test Structures, Tokyo, Japan, 2007, pp 265–267.

    Chapter  Google Scholar 

  19. Nalamwar, S. S.; Bhosale, S. A. Design of low power logic gates by using 32 nm and 16 nm FinFET technology. In Proceedings of the 2015 International Conference on Energy Systems and Applications, Pune, India, 2015, pp 81–85.

    Chapter  Google Scholar 

  20. Park, S.-I.; Ahn, J.-H.; Feng, X.; Wang, S. D.; Huang, Y. G.; Rogers, J. A. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv. Funct. Mater. 2008, 18, 2673–2684.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangsig Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Lee, M., Jeon, Y. et al. Nanowatt power operation of silicon nanowire NAND logic gates on bendable substrates. Nano Res. 9, 3656–3662 (2016). https://doi.org/10.1007/s12274-016-1235-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1235-2

Keywords

Navigation