Skip to main content
Log in

Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiS x ) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of >500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiS x as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  2. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzá lez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  3. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  4. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    Article  Google Scholar 

  5. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  6. Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

    Article  Google Scholar 

  7. Ye, H. L.; Wang, Y. Y.; Zhao, F. P.; Huang, W. J.; Han, N.; Zhou, J. H.; Zeng, M.; Li, Y. G. Iron-based sodium-ion full batteries. J. Mater. Chem. A 2016, 4, 1754–1761.

    Article  Google Scholar 

  8. Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759.

    Article  Google Scholar 

  9. Hu, P.; Wang, X. F.; Ma, J.; Zhang, Z. H.; He, J. J.; Wang, X. G.; Shi, S. Q.; Cui, G. L.; Chen, L. Q. NaV3(POn)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016, 26, 382–391.

    Article  Google Scholar 

  10. Liu, Y. P.; Wang, H. T.; Cheng, L.; Han, N.; Zhao, F. P.; Li, P. R.; Jin, C. H.; Li, Y. G. TiS2 nanoplates: A high-rate and stable electrode material for sodium ion batteries. Nano Energy 2016, 20, 168–175.

    Article  Google Scholar 

  11. Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603.

    Article  Google Scholar 

  12. Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem.— Eur. J. 2014, 20, 11980–11992.

    Article  Google Scholar 

  13. Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.

    Article  Google Scholar 

  14. Yang, E.; Ji, H.; Jung, Y. Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 2015, 119, 26374–26380.

    Article  Google Scholar 

  15. Manthiram, A.; Yu, X. W. Ambient temperature sodium-sulfur batteries. Small 2015, 11, 2108–2114.

    Article  Google Scholar 

  16. Kim, J. S.; Ahn, H. J.; Ryu, H. S.; Kim, D. J.; Cho, G. B.; Kim, K. W.; Nam, T. H.; Ahn, J. H. The discharge properties of Na/Ni3S2 cell at ambient temperature. J. Power Sources 2008, 178, 852–856.

    Article  Google Scholar 

  17. Qin, W.; Chen, T. Q.; Lu, T.; Chua, D. H. C.; Pan, L. K. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. J. Power Sources 2016, 302, 202–209.

    Article  Google Scholar 

  18. Shang, C. Q.; Dong, S. M.; Zhang, S. L.; Hu, P.; Zhang, C. J.; Cui, G. L. A Ni3S2-PEDOT monolithic electrode for sodium batteries. Electrochem. Commun. 2015, 50, 24–27.

    Article  Google Scholar 

  19. Go, D. Y.; Park, J.; Noh, P. J.; Cho, G. B.; Ryu, H. S.; Nam, T. H.; Ahn, H. J.; Kim, K. W. Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries. Mater. Res. Bull. 2014, 58, 190–194.

    Article  Google Scholar 

  20. Ryu, H. S.; Kim, J. S.; Park, J.; Park, J. Y.; Cho, G. B.; Liu, X. J.; Ahn, I. S.; Kim, K. W.; Ahn, J. H.; Ahn, J. P. et al. Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying. J. Power Sources 2013, 244, 764–770.

    Article  Google Scholar 

  21. Pan, Q.; Xie, J.; Zhu, T. J.; Cao, G. S.; Zhao, X. B.; Zhang, S. C. Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties. Inorg. Chem. 2014, 53, 3511–3518.

    Article  Google Scholar 

  22. Park, G. D.; Cho, J. S.; Kang, Y. C. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 2015, 7, 16781–16788.

    Article  Google Scholar 

  23. Wang, T. S.; Hu, P.; Zhang, C. J.; Du, H. P.; Zhang, Z. H.; Wang, X. G.; Chen, S. G.; Xiong, J. W.; Cui, G. L. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 7811–7817.

    Article  Google Scholar 

  24. Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Article  Google Scholar 

  25. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  Google Scholar 

  26. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  27. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  Google Scholar 

  28. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  Google Scholar 

  29. Wang, X. X.; Wang, B.; Zhong, J.; Zhao, F. P.; Han, N.; Huang, W. J.; Zeng, M.; Fan, J.; Li, Y. G. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016, 9, 1497–1506.

    Article  Google Scholar 

  30. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanguang Li.

Additional information

The two authors contributed equally to this work.

Electronic supplementary material

12274_2016_1198_MOESM1_ESM.pdf

Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Gong, Q., Traynor, B. et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 9, 3162–3170 (2016). https://doi.org/10.1007/s12274-016-1198-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1198-3

Keywords

Navigation