Skip to main content
Log in

Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The room-temperature light emission of uncapped III-V semiconductor quantum dots is used to investigate the properties and evolution of the surface under exposure to a humid environment. Enhanced photoluminescence intensity resulting from exposure to polar molecules has already been reported; here we demonstrate that the external environment also has a relevant effect on the emission energy of quantum dots. Experimental results are interpreted on the basis of a model of the quantum system that takes into account the formation of oxide on pristine III-V surfaces and the presence of surface states. As a result of our study, we can clearly distinguish the effect of surface oxidation from that of surface state passivation on the emission of InAs surface quantum dots. This work sheds new light on the properties of semiconductor surface quantum dots as building blocks of novel and highly efficient sensing devices based on optical transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J.; Chen, S. M.; Seeds, A.; Liu, H. Y. Quantum dot optoelectronic devices: Lasers, photodetectors and solar cells. J. Phys. D: Appl. Phys. 2015, 48, 363001.

    Article  Google Scholar 

  2. Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347–400.

    Article  Google Scholar 

  3. Milla, M. J.; Ulloa, J. M.; Guzmán, Á. Strong influence of the humidity on the electrical properties of InGaAs surface quantum dots. ACS Appl. Mater. Interfaces 2014, 6, 6191–6195.

    Article  Google Scholar 

  4. Lin, A.; Liang, B. L.; Dorogan, V. G.; Mazur, Y. I.; Tarasov, G. G.; Salamo, G. J.; Huffaker, D. L. Strong passivation effects on the properties of an InAs surface quantum dot hybrid structure. Nanotechnology 2013, 24, 075701.

    Article  Google Scholar 

  5. Milla, M. J.; Ulloa, J. M.; Guzmán, Á. High optical sensitivity to ambient conditions of uncapped InGaAs surface quantum dots. Appl. Phys. Lett. 2012, 100, 131601.

    Article  Google Scholar 

  6. Milla, M. J.; Ulloa, J. M.; Guzmán, Á. Dependence of surface InGaAs quantum dot luminescence on the molecular properties of the environment. Appl. Phys. Express 2013, 6, 092002.

    Article  Google Scholar 

  7. De Angelis, R.; Casalboni, M.; Hatami, F.; Ugur, A.; Masselink, W. T.; Prosposito, P. Vapour sensing properties of InP quantum dot luminescence. Sensor. Actuat. B-Chem. 2012, 162, 149–152.

    Article  Google Scholar 

  8. Hestroffer, K.; Braun, R.; Ugur, A.; Tomm, J. W.; Hackbarth, S.; Röder, B.; Hatami, F. Surface InP/In0.48Ga0.52P quantum dots: Carrier recombination dynamics and their interaction with fluorescent dyes. J. Appl. Phys. 2013, 114, 163510.

    Article  Google Scholar 

  9. Chen, M. X.; Kobashi, K.; Chen, B.; Lu, M.; Tour, J. M. Functionalized self-assembled InAs/GaAs quantum-dot structures hybridized with organic molecules. Adv. Funct. Mater. 2010, 20, 469–475.

    Article  Google Scholar 

  10. Seker, F.; Meeker, K.; Kuech, T. F.; Ellis, A. B. Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing. Chem. Rev. 2000, 100, 2505–2536.

    Article  Google Scholar 

  11. Frigeri, P.; Seravalli, L.; Trevisi, G.; Franchi, S. Molecular beam epitaxy: An overview. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Oxford, 2016.

    Google Scholar 

  12. Bernstein, R. W.; Borg, A.; Husby, H.; Fimland, B. O.; Grepstad, J. K. Capping and decapping of MBE grown GaAs(001), Al0.5Ga0.5As(001), and AlAs(001) investigated with ASP, PES, LEED, and RHEED. Appl. Surf. Sci. 1992, 56–58, 58–74.

    Google Scholar 

  13. Auf der Maur, M.; Penazzi, G.; Romano, G.; Sacconi, F.; Pecchia, A.; Di Carlo, A. The multiscale paradigm in electronic device simulation. IEEE T. Electron Dev. 2011, 58, 1425–1432.

    Article  Google Scholar 

  14. Barettin, D.; de Angelis, R.; Prosposito, P.; Auf der Maur, M.; Casalboni, M.; Pecchia, A. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results. Nanotechnology 2014, 25, 195201.

    Article  Google Scholar 

  15. Sacconi, F.; Auf der Maur, M.; Di Carlo, A. Optoelectronic properties of nanocolumn InGaN/GaN LEDs. IEEE T. Electron Dev. 2012, 59, 2979–2987.

    Article  Google Scholar 

  16. Seravalli, L.; Bocchi, C.; Trevisi, G.; Frigeri, P. Properties of wetting layer states in low density InAs quantum dot nanostructures emitting at 1.3 µm: Effects of InGaAs capping. J. Appl. Phys. 2010, 108, 114313.

    Article  Google Scholar 

  17. Seravalli, L.; Gioannini, M.; Cappelluti, F.; Sacconi, F.; Trevisi, G.; Frigeri, P. Broadband light sources based on InAs/InGaAs metamorphic quantum dots. J. Appl. Phys. 2016, 119, 143102.

    Article  Google Scholar 

  18. Seravalli, L.; Trevisi, G.; Frigeri, P. Calculation of metamorphic two-dimensional quantum energy system: Application to wetting layer states in InAs/InGaAs metamorphic quantum dot nanostructures. J. Appl. Phys. 2013, 114, 184309.

    Article  Google Scholar 

  19. Smaali, K.; El Hdiy, A.; Molinari, M.; Troyon, M. Band-gap determination of the native oxide capping quantum dots by use of different kinds of conductive AFM probes: Example of InAs/GaAs quantum dots. IEEE T. Electron Dev. 2010, 57, 1455–1459.

    Article  Google Scholar 

  20. Bierwagen, O. Indium oxide—A transparent, wide-band gap semiconductor for (opto)electronic applications. J. Phys. D: Appl. Phys. 2015, 30, 024001.

    Google Scholar 

  21. Nakkar, A.; Folliot, H.; Le Corre, A.; Doré, F.; Alghoraibi, I.; Labbé, C.; Elias, G.; Loualiche, S.; Pistol, M. E.; Caroff, P. et al. Optical properties and morphology of InAs/InP (113)B surface quantum dots. Appl. Phys. Lett. 2008, 92, 231911.

    Article  Google Scholar 

  22. Saito, T.; Schulman, J. N.; Arakawa, Y. Strain-energy distribution and electronic structure of InAs pyramidal quantum dots with uncovered surfaces: Tight-binding analysis. Phys. Rev. B 1998, 57, 13016–13019.

    Article  Google Scholar 

  23. Walther, C.; Blum, R. P.; Niehus, H.; Masselink, W. T.; Thamm, A. Modification of the Fermi-level pinning of GaAs surfaces through InAs quantum dots. Phys. Rev. B 1999, 60, R13962–R13965.

    Article  Google Scholar 

  24. Halpern, E.; Cohen, G.; Gross, S.; Henning, A.; Matok, M.; Kretinin, A. V.; Shtrikman, H.; Rosenwaks, Y. Measuring surface state density and energy distribution in InAs nanowires. Phys. Status Solidi A 2014, 211, 473–482.

    Article  Google Scholar 

  25. De Angelis, R.; D’Amico, L.; Casalboni, M.; Hatami, F.; Masselink, W. T.; Prosposito, P. Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage. Sensor. Actuat. B-Chem. 2013, 189, 113–117.

    Article  Google Scholar 

  26. Zhang, X. Q.; Ptasinska, S. Dissociative adsorption of water on an H2O/GaAs(100) interface: In situ near-ambient pressure XPS studies. J Phys Chem C 2014, 118, 4259–4266.

    Article  Google Scholar 

  27. Losurdo, M.; Wu, P. C.; Kim, T.-H.; Bruno, G.; Brown, A. S. Cysteamine-based functionalization of InAs surfaces: Revealing the critical role of oxide interactions in biasing attachment. Langmuir 2012, 28, 1235–1245.

    Article  Google Scholar 

  28. Shiramine, K.-I.; Muto, S.; Shibayama, T.; Sakaguchi, N.; Ichinose, H.; Kozaki, T.; Sato, S.; Nakata, Y.; Yokoyama, N.; Taniwaki, M. Tip artifact in atomic force microscopy observations of InAs quantum dots grown in Stranski–Krastanow mode. Appl. Phys. Lett. 2007, 101, 033527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Trevisi.

Electronic supplementary material

12274_2016_1184_MOESM1_ESM.pdf

Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevisi, G., Seravalli, L. & Frigeri, P. Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor. Nano Res. 9, 3018–3026 (2016). https://doi.org/10.1007/s12274-016-1184-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1184-9

Keywords

Navigation