Skip to main content
Log in

Sub-molecular features of single proteins in solution resolved with scanning tunneling microscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) can be used to image individual biological molecules, such as proteins, in vacuum or air. This requires sample dehydration and thus may not reflect the native state of the molecule. Extensive efforts have been made to image single proteins in solution using STM; however, the images have revealed only round or oval shapes with no sub-molecular details. Here, we present the sub-molecular features of streptavidin proteins under physiological conditions using a homebuilt low-leakage-current and highstability liquid phase STM. The N-lobe, C-lobe, and C-terminal tail of the epidermal growth factor receptor kinase domains were also resolved in solution. Our results demonstrate that the structure, morphology, and dynamics of a protein molecule can be examined under physiological conditions by the STM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, Z. T.; Thontasen, N.; Malinowski, N.; Rinke, G.; Harnau, L.; Rauschenbach, S.; Kern, K. A close look at proteins: Submolecular resolution of two- and threedimensionally folded cytochrome c at surfaces. Nano Lett. 2012, 12, 2452–2458.

    Article  Google Scholar 

  2. Zhang, M.; Mao, X. B.; Wang, C. X.; Zeng, W. F.; Zhang, C. L.; Li, Z. J.; Fang, Y.; Yang, Y. L.; Liang, W.; Wang, C. The effect of graphene oxide on conformation change, aggregation and cytotoxicity of HIV-1 regulatory protein (Vpr). Biomaterials 2013, 34, 1383–1390.

    Article  Google Scholar 

  3. Orive, A. G.; Pissinis, D. E.; Diaz, C.; Miñán, A.; Benítez, G. A.; Rubert, A.; Millone, A. D.; Rumbo, M.; Creus, A. H.; Salvarezza, R. C. et al. Self-assembly of flagellin on Au(111) surfaces. J. Colloid Interface Sci. 2014, 433, 86–93.

    Article  Google Scholar 

  4. Miles, M. J.; Carr, H. J.; McMaster, T. C.; I'Anson, K. J.; Belton, P. S.; Morris, V. J.; Field, J. M.; Shewry, P. R.; Tatham, A. S. Scanning tunneling microscopy of a wheat seed storage protein reveals details of an unusual supersecondary structure. Proc. Natl. Acad. Sci. USA 1991, 88, 68–71.

    Article  Google Scholar 

  5. Losic, D.; Martin, L. L.; Mechler, A.; Aguilar, M. I.; Small, D. H. High resolution scanning tunnelling microscopy of the ß-amyloid protein (Aß1–40) of Alzheimer's disease suggests a novel mechanism of oligomer assembly. J. Struct. Biol. 2006, 155, 104–110.

    Article  Google Scholar 

  6. Patel, N.; Davies, M. C.; Heaton, R. J.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. A scanning probe microscopy study of the physisorption and chemisorption of protein molecules onto carboxylate terminated self-assembled monolayers. Appl. Phys. A 1998, 66, S569–S574.

    Article  Google Scholar 

  7. Halliwell, C. M.; Davies, J. A.; Gallop, J. C.; Josephs-Franks, P. W. Real-time scanning tunnelling microscopy imaging of protein motion at electrode surfaces. Bioelectrochemistry 2004, 63, 225–228.

    Article  Google Scholar 

  8. Welland, M. E.; Miles, M. J.; Lambert, N.; Morris, V. J.; Coombs, J. H.; Pethica, J. B. Structure of the globular protein vicilin revealed by scanning tunnelling microscopy. Int. J. Biol. Macromol. 1989, 11, 29–32.

    Article  Google Scholar 

  9. Arakawa, H.; Umemura, K.; Ikai, A. Protein images obtained by STM, AFM and TEM. Nature 1992, 358, 171–173.

    Article  Google Scholar 

  10. Edstrom, R. D.; Meinke, M. H.; Yang, X. R.; Yang, R.; Elings, V.; Evans, D. F. Direct visualization of phosphorylasephosphorylase kinase complexes by scanning tunneling and atomic force microscopy. Biophys. J. 1990, 58, 1437–1448.

    Article  Google Scholar 

  11. Amrein, M.; Durr, R.; Stasiak, A.; Gross, H.; Travaglini, G. Scanning tunneling microscopy of uncoated recA-DNA complexes. Science 1989, 243, 1708–1711.

    Article  Google Scholar 

  12. Zasadzinski, J. A. Scanning tunneling microscopy with applications to biological surfaces. BioTechniques 1989, 7, 174–187.

    Google Scholar 

  13. Lee, G.; Arscott, P. G.; Bloomfield, V. A.; Evans, D. F. Scanning tunneling microscopy of nucleic acids. Science 1989, 244, 475–477.

    Article  Google Scholar 

  14. Keller, D.; Bustamante, C.; Keller, R. W. Imaging of single uncoated DNA molecules by scanning tunneling microscopy. Proc. Natl. Acad. Sci. USA 1989, 86, 5356–5360.

    Article  Google Scholar 

  15. Cricenti, A.; Selci, S.; Felici, A. C.; Generosi, R.; Gori, E.; Djaczenko, W.; Chiarotti, G. Molecular structure of DNA by scanning tunneling microscopy. Science 1989, 245, 1226–1227.

    Article  Google Scholar 

  16. Shapir, E.; Sagiv, L.; Borovok, N.; Molotski, T.; Kotlyar, A. B.; Porath, D. High-resolution STM imaging of novel single G4-DNA molecules. J. Phys. Chem. B. 2008, 112, 9267–9269.

    Article  Google Scholar 

  17. Mao, X. B.; Guo, Y. Y.; Luo, Y.; Niu, L.; Liu, L.; Ma, X. J.; Wang, H. B.; Yang, Y. L.; Wei, G. H.; Wang, C. Sequence effects on peptide assembly characteristics observed by using scanning tunneling microscopy. J. Am. Chem. Soc. 2013, 135, 2181–2187.

    Article  Google Scholar 

  18. Gong, J. R.; Yan, H. J.; Yuan, Q. H.; Xu, L. P.; Bo, Z. S.; Wan, L. J. Controllable distribution of single molecules and peptides within oligomer template investigated by STM. J. Am. Chem. Soc. 2006, 128, 12384–12385.

    Article  Google Scholar 

  19. Albrecht, T.; Li, W. W.; Haehnel, W.; Hildebrandt, P.; Ulstrup, J. Voltammetry and in situ scanning tunnelling microscopy of de novo designed heme protein monolayers on Au(111)-electrode surfaces. Bioelectrochemistry 2006, 69, 193–200.

    Article  Google Scholar 

  20. Friis, E. P.; Andersen, J. E. T.; Kharkats, Y. I.; Kuznetsov, A. M.; Nichols, R. J.; Zhang, J. D.; Ulstrup, J. An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution. Proc. Natl. Acad. Sci. USA 1999, 96, 1379–1384.

    Article  Google Scholar 

  21. Wang, D.; Wan, L. J.; Wang, C.; Bai, C. L. In situ STM evidence for adsorption of rhodamine B in solution. J. Phys. Chem. B. 2002, 106, 4223–4226.

    Article  Google Scholar 

  22. Wei, G. X.; Pan, G. B.; Wan, L. J.; Zhao, J. C.; Bai, C. L. In situ STM of phenolic compounds on Cu(111) in solution. Surf. Sci. 2002, 520, L625–L632.

    Article  Google Scholar 

  23. Kim, Y. G.; Baricuatro, J. H.; Soriaga, M. P. Molecular adsorption at well-defined electrode surfaces: Hydroquinone on Pd(111) studied by EC-STM. Langmuir 2006, 22, 10762–10765.

    Article  Google Scholar 

  24. Wang, Q.; Hou, Y. B.; Wang, J. T.; Lu, Q. Y. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability. Rev. Sci. Instrum. 2013, 84, 113703.

    Article  Google Scholar 

  25. Wang, Q.; Hou, Y. B.; Lu, Q. Y. Note: A compact, rigid, and easy-to-build piezo motor: The intact-tube GeckoDrive. Rev. Sci. Instrum. 2013, 84, 056106.

    Article  Google Scholar 

  26. Xia, Z. G.; Wang, J. H.; Hou, Y. B.; Lu, Q. Y. A high stability and repeatability electrochemical scanning tunneling microscope. Rev. Sci. Instrum. 2014, 85, 125103.

    Article  Google Scholar 

  27. Wang, Q.; Lu, Q. Y. A simple, compact, and rigid piezoelectric step motor with large step size. Rev. Sci. Instrum. 2009, 80, 085104.

    Article  Google Scholar 

  28. Lu, Q. Y.; Hou, Y. B. A double-piezo-actuator driven linear piezoelectric motor for nano positioning, its control method and controller. People’s Republic of China Parent CN 200610161477, Jul 11, 2007.

    Google Scholar 

  29. Wang, Q; Lu, Q. Y. A three-friction-force piezoelectric stepper driven by two piezo actuators in parallel, and the corresponding scanning probe microscope. People’s Republic of China Patent CN 200910116492, Sep 2, 2009.

    Google Scholar 

  30. Xia, Z. G.; Wang, J. H.; Hou, Y. B.; Lu, Q. Y. A highly stable electrochemical scanning tunneling microscope. Chin. J. Chem. Phys. 2015, 28, 70–72.

    Article  Google Scholar 

  31. Ostojic, G. N.; Hersam, M. C. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds. Small 2012, 8, 1840–1845.

    Article  Google Scholar 

  32. Zhang, C.; Tian, C.; Guo, F.; Liu, Z.; Jiang, W.; Mao, C. D. DNA-directed three-dimensional protein organization. Angew. Chem., Int. Ed. 2012, 51, 3382–3385.

    Article  Google Scholar 

  33. Hendrickson, W. A.; Pähler, A.; Smith, J. L.; Satow, Y.; Merritt, E. A.; Phizackerley, R. P. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc. Natl. Acad. Sci. USA 1989, 86, 2190–2194.

    Article  Google Scholar 

  34. Kim, D. J.; Cho, E. C.; Koo, K. K. Effect of length of biotin modified n-alkanethiolates on the formation of a selfassembled streptavidin-biotin monolayer on a gold substrate. Nanotechnology 2005, 1, 438–441.

    Google Scholar 

  35. Almonte, L.; Lopez-Elvira, E.; Baró, A. M. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy–force spectroscopy. ChemPhyschem 2014, 15, 2768–2773.

    Article  Google Scholar 

  36. Kobayashi, M.; Sumitomo, K.; Torimitsu, K. Real-time imaging of DNA–streptavidin complex formation in solution using a high-speed atomic force microscope. Ultramicroscopy 2007, 107, 184–190.

    Article  Google Scholar 

  37. Niemeyer, C. M.; Adler, M.; Pignataro, B.; Lenhert, S.; Gao, S.; Chi, L. F.; Fuchs, H.; Dietmar, B. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res. 1999, 27, 4553–4561.

    Article  Google Scholar 

  38. Olk, C. H.; Heremans, J.; Lee, P. S.; Dziedzic, D.; Sargent, N. E. IgG antibody and antibody–antigen complex imaging by scanning tunneling microscopy. J. Vac. Sci. Technol. B. 1991, 9, 1268–1271.

    Article  Google Scholar 

  39. Makky, A.; Berthelot, T.; Feraudet-Tarisse, C.; Volland, H.; Viel, P.; Polesel-Maris, J. Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy. Sens. Actuators, B: Chem. 2012, 162, 269–277.

    Article  Google Scholar 

  40. Ouerghi, O.; Touhami, A.; Othmane, A.; Ben Ouada, H.; Martelet, C.; Fretigny, C.; Jaffrezic-Renault, N. Investigating antibody–antigen binding with atomic force microscopy. Sens. Actuators, B: Chem. 2002, 84, 167–175.

    Article  Google Scholar 

  41. Kawadia, V.; Sreenivasan, S. Sequential detection of temporal communities by estrangement confinement. Sci. Rep. 2012, 2, 794.

    Article  Google Scholar 

  42. Zhang, L.; Wang, J. H.; Wang, H. L.; Wang, W. C.; Li, Z.; Liu, J. J.; Yang, X. X.; Ji, X. M.; Luo, Y.; Hu, C. et al. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation. Oncotarget, in press, DOI: 10.18632/oncotarget.9479.

  43. Silverton, E. W.; Navia, M. A.; Davies, D. R. Threedimensional structure of an intact human immunoglobulin. Proc. Natl. Acad. Sci. USA 1977, 74, 5140–5144.

    Article  Google Scholar 

  44. Svergun, D. I.; Richard, S.; Koch, M. H. J.; Sayers, Z.; Kuprin, S.; Zaccai, G. Protein hydration in solution: Experimental observation by X-ray and neutron scattering. Proc. Natl. Acad. Sci. USA 1998, 95, 2267–2272.

    Article  Google Scholar 

  45. Ebbinghaus, S.; Kim, S. J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D. M.; Havenith, M. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 20749–20752.

    Article  Google Scholar 

  46. Damjanovic, A.; García-Moreno, E. B.; Lattman, E. E.; García, A. E. Molecular dynamics study of hydration of the protein interior. Comput. Phys. Commun. 2005, 169, 126–129.

    Article  Google Scholar 

  47. Otting, G.; Liepinsh, E.; Wuthrich, K. Protein hydration in aqueous solution. Science 1991, 254, 974–980.

    Article  Google Scholar 

  48. Vesenka, J.; Guthold, M.; Tang, C. L.; Keller, D.; Delaine, E.; Bustamante, C. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 1992, 42–44, 1243–1249.

    Article  Google Scholar 

  49. Li, L. Y.; Chen, S. F.; Oh, S.; Jiang, S. Y. In situ singlemolecule detection of antibody–antigen binding by tappingmode atomic force microscopy. Anal. Chem. 2002, 74, 6017–6022.

    Article  Google Scholar 

  50. Xiao, L. F.; Chen, Q.; Wu, Y. Z.; Qi, X. J.; Zhou, A. H. Simultaneous topographic and recognition imaging of epidermal growth factor receptor (EGFR) on single human breast cancer cells. Biochim. Biophys. Acta 2015, 1848, 1988–1995.

    Article  Google Scholar 

  51. Barth, C.; Pakarinen, O. H.; Foster, A. S.; Henry, C. R. Imaging nanoclusters in the constant height mode of the dynamic SFM. Nanotechnology 2006, 17, S128.

    Article  Google Scholar 

  52. Mamin, H. J.; Ganz, E.; Abraham, D. W.; Thomson, R. E.; Clarke, J. Contamination-mediated deformation of graphite by the scanning tunneling microscope. Phys. Rev. B 1986, 34, 9015(R).

    Article  Google Scholar 

  53. Soler, J. M.; Baro, A. M.; García, N.; Rohrer, H. Interatomic forces in scanning tunneling microscopy: Giant corrugations of the graphite surface. Phys. Rev. Lett. 1986, 57, 444–447.

    Article  Google Scholar 

  54. Hembacher, S.; Giessibl, F. J.; Mannhart, J.; Quate, C. F. Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys. Rev. Lett. 2005, 94, 056101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Qingyou Lu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Hu, C. et al. Sub-molecular features of single proteins in solution resolved with scanning tunneling microscopy. Nano Res. 9, 2551–2560 (2016). https://doi.org/10.1007/s12274-016-1141-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1141-7

Keywords

Navigation