Skip to main content
Log in

Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single wall carbon nanotubes (SWNTs) are known for their exceptional electronic properties. However, most of the synthesis methods lead to the production of a mixture of carbon nanotubes having different chiralities associated with metallic (m-SWNTs) and semiconducting (s-SWNTs) characteristics. For application purposes, effective methods for separating these species are highly desired. Here, we report a protocol for achieving a highly selective separation of s-SWNTs that exhibit a fundamental optical transition centered at 1,550 nm. We employ a polymer assisted sorting approach, and the influence of preparation methods on the optical and transport performances of the separated nanotubes is analyzed. As even traces of m-SWNTs can critically affect performances, we aim to produce samples that do not contain any detectable fraction of residual m-SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  Google Scholar 

  2. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.

    Article  Google Scholar 

  3. Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21, 3210–3216.

    Article  Google Scholar 

  4. Dillon, A. C. Carbon nanotubes for photoconversion and electrical energy storage. Chem. Rev. 2010, 110, 6856–6872.

    Article  Google Scholar 

  5. Zeng, Q. S.; Wang, S.; Yang, L. J.; Wang, Z. X.; Zhang, Z. Y.; Peng, L. M.; Zhou, W. Y.; Xie, S. S. Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics. Nano Res. 2012, 5, 33–42.

    Article  Google Scholar 

  6. Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Nearinfrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86–92.

    Article  Google Scholar 

  7. St-Antoine, B. C.; Ménard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609–613.

    Article  Google Scholar 

  8. Liu, Y.; Wei, N.; Zhao, Q. L.; Zhang, D. H.; Wang, S.; Peng, L. M. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes. Nanoscale 2015, 7, 6805–6812.

    Article  Google Scholar 

  9. Freitag, M.; Perebeinos, V.; Chen, J.; Stein, A.; Tsang, J. C.; Misewich, J. A.; Martel, R.; Avouris, P. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 2004, 4, 1063–1066.

    Article  Google Scholar 

  10. Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow band light emission from a single carbon nanotube p–n diode. Nat. Nanotechnol. 2010, 5, 27–31.

    Article  Google Scholar 

  11. Koyama, T.; Miyata, Y.; Asada, Y.; Shinohara, H.; Kataura, H.; Nakamura, A. Bright luminescence and exciton energy transfer in polymer-wrapped single-walled carbon nanotube bundles. J. Phys. Chem. Lett. 2010, 1, 3243–3248.

    Article  Google Scholar 

  12. Koyama, T.; Shimizu, S.; Saito, T.; Miyata, Y.; Shinohara, H.; Nakamura, A. Ultrafast luminescence kinetics of metallic single walled carbon nanotubes: Possible evidence for excitonic luminescence. Phys. Rev. B 2012, 85, 045428.

    Article  Google Scholar 

  13. Grechko, M.; Ye, Y. M.; Mehlenbacher, R. D.; McDonough, T. J.; Wu, M. Y.; Jacobberger, R. M.; Arnold, M. S.; Zanni, M. T. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films. ACS Nano 2014, 8, 5383–5394.

    Article  Google Scholar 

  14. Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

    Article  Google Scholar 

  15. Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.

    Article  Google Scholar 

  16. Choi, S. J.; Wang, C.; Lo, C. C.; Bennet, P.; Javey, A.; Bokor, J. Comparative study of solution-processed carbon nanotube network transistors. Appl. Phys. Lett. 2012, 101, 112104.

    Article  Google Scholar 

  17. Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

    Article  Google Scholar 

  18. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  Google Scholar 

  19. Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal−nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.

    Article  Google Scholar 

  20. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  Google Scholar 

  21. Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

    Article  Google Scholar 

  22. Zhang, Y. Y.; Zhang, Y.; Xian, X. J.; Zhang, J.; Liu, Z. F. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 2008, 112, 3849–3856.

    Article  Google Scholar 

  23. Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.

    Article  Google Scholar 

  24. Darchy, L.; Hanifi, N.; Vialla, F.; Voisin, C.; Bayle, P. A.; Genovese, L.; Celle, C.; Simonato, J. P.; Filoramo, A.; Derycke, V. et al. A highly selective non radical diazo coupling provides low cost semi conducting carbon nanotubes. Carbon 2014, 66, 246–258.

    Article  Google Scholar 

  25. Yahay, I.; Bonaccorso, F.; Clowes, S. K.; Ferrari, A. C.; Silva, S. R. P. Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon 2015, 93, 574–594.

    Article  Google Scholar 

  26. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

    Article  Google Scholar 

  27. Chen, F. M.; Wang, B.; Chen, Y.; Li, L. J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013–3017.

    Article  Google Scholar 

  28. Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Ijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112.

    Article  Google Scholar 

  29. Gaufrès, E.; Izard, N.; Noury, A.; Le Roux, X.; Rasigade, G.; Beck, A.; Vivien, L. Light emission in silicon from carbon nanotubes. ACS Nano 2012, 6, 3813–3819.

    Article  Google Scholar 

  30. Gomulya, W.; Costanzo, G. D.; Figueiredo de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A. et al. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 2013, 25, 2948–2956.

    Article  Google Scholar 

  31. Wang, W. Z.; Li, W. F.; Pan, X. Y.; Li, C. M.; Li, L. J.; Mu, Y. G.; Rogers, J. A.; Chan-Park, M. B. Degradable conjugated polymers: Synthesis and applications in enrichment of semiconducting single-walled carbon nanotubes. Adv. Funct. Mater. 2011, 21, 1643–1651.

    Article  Google Scholar 

  32. Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of semiconducting single-wall carbon nanotubes by poly(9,9-dioctylfluorene-alt-pyridine) for 1.5 μm emission. ACS Appl. Mater. Interfaces 2012, 4, 6458–6462.

    Article  Google Scholar 

  33. Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly(9,9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908–11911.

    Article  Google Scholar 

  34. Zhang, X.; Zhao, J. W.; Tange, M.; Xu, W. Y.; Xu, W. W.; Zhang, K. D.; Guo, W. R.; Okazaki, T.; Cui, Z. Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon 2015, 94, 903–910.

    Article  Google Scholar 

  35. Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231–2239.

    Article  Google Scholar 

  36. Yang, H. L.; Bezugly, V.; Kunstmann, J.; Filoramo, A.; Cuniberti, G. Diameter-selective dispersion of carbon nanotubes via polymers: A competition between adsorption and bundling. ACS Nano 2015, 9, 9012–9019.

    Article  Google Scholar 

  37. Jost, O.; Gorbunov, A. A.; Möller, J.; Pompe, W.; Graff, A.; Friedlein, R.; Liu, X.; Golden, M. S.; Fink, J. Impact of catalyst coarsening on the formation of single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 339, 297–304.

    Article  Google Scholar 

  38. Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.

    Article  Google Scholar 

  39. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, J. P.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

    Article  Google Scholar 

  40. Campoy-Quiles, M.; Etchegoin, P. G.; Bradley, D. D. C. Exploring the potential of ellipsometry for the characterisation of electronic, optical, morphologic and thermodynamic properties of polyfluorene thin films. Synthetic Met. 2005, 155, 279–282.

    Article  Google Scholar 

  41. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

    Article  Google Scholar 

  42. Dresselhaus, M. S.; Dresselhaus, G.; Hofmann, M. The big picture of Raman scattering in carbon nanotubes. Vib. Spectrosc. 2007, 45, 71–81.

    Article  Google Scholar 

  43. Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

    Article  Google Scholar 

  44. Li, Z.; Ding, J. F.; Finnie, P.; Lefebvre, J.; Cheng, F. Y.; Kingston, C. T.; Malenfant, P. R. L. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 2015, 8, 2179–2187.

    Article  Google Scholar 

  45. Bisri, S. Z.; Gao, J.; Derenskyi, V.; Gomulya, W.; Iezhokin, I.; Gordiichuk, P.; Herrmann, A.; Loi, M. A. High performance ambipolar field-effect transistor of random network carbon nanotubes. Adv. Mater. 2012, 24, 6147–6152.

    Article  Google Scholar 

  46. Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett 2001, 87, 256805.

    Article  Google Scholar 

  47. Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Carbon nanotubes as schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Filoramo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarti, F., Biccari, F., Fioravanti, F. et al. Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths. Nano Res. 9, 2478–2486 (2016). https://doi.org/10.1007/s12274-016-1134-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1134-6

Keywords

Navigation