Skip to main content
Log in

Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the preparation and encapsulation properties of stimuli-responsive nanocapsules, self-assembled by the noncovalent interactions of cyclodextrinappended polymers (host) and complementary ferrocene or azobenzene carriers (guest). The encapsulation process was significantly accelerated by applying (electro) chemical or light stimulus, enabling the easier and faster diffusion of guest molecules through the polymer layers. The nanocapsules were characterized by dynamic light scattering, confocal microscopy, ESEM, AFM, UV–visible and fluorescence spectroscopy, and electrochemical techniques. The encapsulation and release properties of the nanocapsules were reversible and could be repeated several times, indicating that the prepared nanoassemblies are very stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Mü ller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, J.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuliresponsive polymer materials. Nat. Mater. 2010, 9, 101–113.

    Article  Google Scholar 

  2. Chen, T.; Ferris, R.; Zhang, J. M.; Ducker, R.; Zauscher, S. Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Progr. Polym. Sci. 2010, 35, 94–112.

    Article  Google Scholar 

  3. Peyratout, C. S.; Dähne, L. Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angew. Chem., Int. Ed. 2004, 43, 3762–3783.

    Article  Google Scholar 

  4. Shchukin, D. G.; Shchukina, E. Capsules with external navigation and triggered release. Curr. Opin. Pharmacol. 2014, 18, 42–46.

    Article  Google Scholar 

  5. Yi, Q. Y.; Sukhorukov, G. B. UV light stimulated encapsulation and release by polyelectrolyte microcapsules. Adv. Colloid Interface Sci. 2014, 207, 280–288.

    Article  Google Scholar 

  6. Cui, J. W.; van Koeverden, M. P.; Müllner, M.; Kempe, K.; Caruso, F. Emerging methods for the fabrication of polymer capsules. Adv. Colloid Interface Sci. 2014, 207, 14–31.

    Article  Google Scholar 

  7. Chi, X. D.; Ji, X. F.; Xia, D. Y.; Huang, F. H. A dualresponsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillarai][7]arene and an azobenzenecontaining random copolymer. J. Am. Chem. Soc. 2015, 137, 1440–1443.

    Article  Google Scholar 

  8. Bédard, M. F.; De Geest, B. G.; Skirtach, A. G.; Möhwald, H.; Sukhorukov, G. B. Polymeric microcapsules with light responsive properties for encapsulation and release. Adv. Colloid Interface Sci. 2010, 158, 2–14.

    Article  Google Scholar 

  9. Tao, X.; Li, J. B.; Möhwald, H. Self-Assembly, optical behavior, and permeability of a novel capsule based on an azo dye and polyelectrolytes. Chem.—Eur. J. 2004, 10, 3397–3403.

    Article  Google Scholar 

  10. Bédard, M.; Skirtach, A. G.; Sukhorukov, G. B. Optically driven encapsulation using novel polymeric hollow shells containing an azobenzene polymer. Macromol. Rapid Commun. 2007, 28, 1517–1521.

    Article  Google Scholar 

  11. Lin, H.; Xiao, W.; Qin, S.-Y.; Cheng, S.-X.; Zhang, X.-Z. Switch on/off microcapsules for controllable photosensitive drug release in a “release-cease-recommence” mode. Polym. Chem. 2014, 5, 4437–4440.

    Google Scholar 

  12. Yi, Q. Y.; Sukhorukov, G. B. UV-induced disruption of microcapsules with azobenzene groups. Soft Matter 2014, 10, 1384–1391.

    Article  Google Scholar 

  13. Huo, M.; Yuan, J. Y.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym. Chem. 2014, 5, 1519–1528.

    Article  Google Scholar 

  14. Zhao, M. X.; Biswas, A.; Hu, B. L.; Joo, K.-I.; Wang, P.; Gu, Z.; Tang, Y. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 2011, 32, 5223–5230.

    Article  Google Scholar 

  15. Crucho, C. I. C. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2015, 10, 24–38.

    Article  Google Scholar 

  16. Ma, Y. J.; Dong, W.-F.; Hempenius, M. A.; Möhwald, H.; Vancso, G. J. Redox-controlled molecular permeability of composite-wall microcapsules. Nat. Mater. 2006, 5, 724–729.

    Article  Google Scholar 

  17. Wang, Z. P.; Möhwald, H.; Gao, C. Y. Preparation and redox-controlled reversible response of ferrocene-modified poly(allylamine hydrochloride) microcapsules. Langmuir 2011, 27, 1286–1291.

    Article  Google Scholar 

  18. Nijhuis, C. A.; Boukamp, B. A.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Electrochemistry of ferrocenyl dendrimer-β-cyclodextrin assemblies at the interface of an aqueous solution and a molecular printboard. J. Phys. Chem. C, 2007, 111, 9799–9810.

    Article  Google Scholar 

  19. Ortiz, M.; Wajs, E.; Fragoso, A.; O’Sullivan, C. K. A bienzymatic amperometric immunosensor exploiting supramolecular construction for ultrasensitive protein detection. Chem. Commun. 2012, 48, 1045–1047.

    Article  Google Scholar 

  20. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1753.

    Article  Google Scholar 

  21. Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 2007, 107, 3088–3116.

    Article  Google Scholar 

  22. Huskens, J.; Deij, M. A.; Reinhoudt, D. N. Attachment of molecules at a molecular printboard by multiple host–guest interactions. Angew. Chem., Int. Ed. 2002, 41, 4467–4471.

    Article  Google Scholar 

  23. Yamaguchi, H.; Kobayashi, Y.; Kobayashi, R.; Takashma, Y.; Hashidzume, A.; Harada, A. Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 2012, 3, 603.

    Article  Google Scholar 

  24. Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat. Commun. 2012, 3, 1270.

    Article  Google Scholar 

  25. Nakahata, M.; Takashima, Y.; Hashidzume, A.; Harada, A. Redox-generated mechanical motion of a supramolecular polymeric actuator based on host–guest interactions. Angew. Chem., Int. Ed., 2013, 52, 5731–5736.

    Article  Google Scholar 

  26. Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2011, 2, n511.

    Article  Google Scholar 

  27. Davis, M. E.; Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035.

    Article  Google Scholar 

  28. Zhang, J. X.; Ma, P. X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev. 2013, 65, 1215–1233.

    Article  Google Scholar 

  29. Ren, S. D.; Chen, D. Y.; Jiang, M. Noncovalently connected micelles based on a β-cyclodextrin-containing polymer and adamantane end-capped poly(e-caprolactone) via host–guest interactions J. Polym. Sci. A: Polym. Chem. 2009, 47, 4267–4278.

    Article  Google Scholar 

  30. Cho, S. Y.; Allcock, H. R. Synthesis of adamantyl polyphosphazene-polystyrene block copolymers, and β-Cyclodextrin-adamantyl side group complexation. Macromolecules 2009, 42, 4484–4490.

    Article  Google Scholar 

  31. Wang, Z. P.; Feng, Z. Q.; Gao, C. Y. Stepwise assembly of the same polyelectrolytes using host–guest interaction to obtain microcapsules with multiresponsive properties. Chem. Mater. 2008, 20, 4194–4199.

    Article  Google Scholar 

  32. Li, C.; Luo, G.-F.; Wang, H.-Y.; Zhang, J.; Gong, Y.-H.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z. Host–guest assembly of pH-responsive degradable microcapsules with controlled drug release behavior. J. Phys. Chem. C, 2011, 115, 17651–17659.

    Article  Google Scholar 

  33. Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Template-assisted preparation of permeable nanocapsules from complementary cyclodextrin and adamantane–appended biocompatible dextran polymers. Macromol. Mater. Eng. 2015, 300, 878–884.

    Article  Google Scholar 

  34. Höfler, T.; Wenz, G. Determination of binding energies between cyclodextrins and aromatic guest molecules by microcalorimetry. J. Inclus. Phenom. Mol. Recognit. Chem. 1996, 25, 81–84.

    Article  Google Scholar 

  35. Zubiaur, M.; Jaime, C. Complexation between tert-butyl ketones and β-cyclodextrin. Structural study by NMR and MDsimulations. J. Org. Chem. 2000, 65, 8139–8145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Fragoso.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajs, E., Nielsen, T.T., Larsen, K.L. et al. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res. 9, 2070–2078 (2016). https://doi.org/10.1007/s12274-016-1097-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1097-7

Keywords

Navigation