Skip to main content
Log in

Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Protein therapy, wherein therapeutic proteins are delivered to treat disorders, is considered the safest and most direct approach for treating diseases. However, its applications are highly limited by the paucity of efficient strategies for delivering proteins and the rapid clearance of therapeutic proteins in vivo after their administration. Here, we demonstrate a novel strategy that can significantly prolong the circulation time of therapeutic proteins as well as minimize their immunogenicity. This is achieved by encapsulating individual protein molecules with a thin layer of crosslinked phosphorylcholine polymer that resists protein adsorption. Through extensive cellular studies, we demonstrate that the crosslinked phosphorylcholine polymer shell effectively prevents the encapsulated protein from being phagocytosed by macrophages, which play an essential role in the clearance of nanoparticles in vivo. Moreover, the polymer shell prevents the encapsulated protein from being identified by immune cells. As a result, immune responses against the therapeutic protein are effectively suppressed. This work describes a feasible method to prolong the circulation time and reduce the immunogenicity of therapeutic proteins, which may promote the development and application of novel protein therapies in the treatment of diverse diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

    Article  Google Scholar 

  2. Krejsa, C.; Rogge, M.; Sadee, W. Protein therapeutics: New applications for pharmacogenetics. Nat. Rev. Drug Discov. 2006, 5, 507–521.

    Article  Google Scholar 

  3. Christian, D. A.; Cai, S. S.; Bowen, D. M.; Kim, Y.; Pajerowski, J. D.; Discher, D. E. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm. 2009, 71, 463–474.

    Article  Google Scholar 

  4. Baker, M.; Reynolds, H. M.; Lumicisi, B.; Bryson, C. J. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self/Nonself 2010, 1, 314–322.

    Article  Google Scholar 

  5. Manning, M. C.; Chou, D. K.; Murphy, B. M.; Payne, R. W.; Katayama, D. S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544–575.

    Article  Google Scholar 

  6. Manning, M. C.; Patel, K.; Borchardt, R. T. Stability of protein pharmaceuticals. Pharm. Res. 1989, 6, 903–918.

    Article  Google Scholar 

  7. Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    Article  Google Scholar 

  8. Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318.

    Google Scholar 

  9. Pisal, D. S.; Kosloski, M. P.; Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 2010, 99, 2557–2575.

    Article  Google Scholar 

  10. Harris, J. M.; Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221.

    Article  Google Scholar 

  11. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem., Int. Ed. 2010, 49, 6288–6308.

    Article  Google Scholar 

  12. Harris, J. M.; Veronese, F. M. Peptide and protein pegylation II-clinical evaluation. Adv. Drug Deliv. Rev. 2003, 55, 1259–1260.

    Article  Google Scholar 

  13. Armstrong, J. K.; Hempel, G.; Koling, S.; Chan, L. S.; Fisher, T.; Meiselman, H. J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007, 110, 103–111.

    Article  Google Scholar 

  14. Veronese, F. M. Peptide and protein PEGylation: A review of problems and solutions. Biomaterials 2001, 22, 405–417.

    Article  Google Scholar 

  15. Ishihara, T.; Takeda, M.; Sakamoto, H.; Kimoto, A.; Kobayashi, C.; Takasaki, N.; Yuki, K.; Tanaka, K.; Takenaga, M.; Igarashi, R. et al. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm. Res. 2009, 26, 2270–2279.

    Article  Google Scholar 

  16. Ishihara, K.; Oshida, H.; Endo, Y.; Ueda, T.; Watanabe, A.; Nakabayashi, N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Mater. Res. 1992, 26, 1543–1552.

    Article  Google Scholar 

  17. Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39, 323–330.

    Article  Google Scholar 

  18. Zhang, L.; Cao, Z. Q.; Bai, T.; Carr, L.; Ella-Menye, J.-R.; Irvin, C.; Ratner, B. D.; Jiang, S. Y. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013, 31, 553–556.

    Article  Google Scholar 

  19. Lowe, A. B.; McCormick, C. L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev. 2002, 102, 4177–4190.

    Article  Google Scholar 

  20. Zhang, Z.; Chen, S. F.; Chang, Y.; Jiang, S. Y. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. B 2006, 110, 10799–10804.

    Article  Google Scholar 

  21. Zhang, Z.; Vaisocherová, H.; Cheng, G.; Yang, W.; Xue, H.; Jiang, S. Y. Nonfouling behavior of polycarboxybetainegrafted surfaces: Structural and environmental effects. Biomacromolecules 2008, 9, 2686–2692.

    Article  Google Scholar 

  22. Vaisocherová, H.; Yang, W.; Zhang, Z.; Cao, Z. Q.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S. Y. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal. Chem. 2008, 80, 7894–7901.

    Article  Google Scholar 

  23. Jiang, S. Y.; Cao, Z. Q. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920–932.

    Article  Google Scholar 

  24. Chen, S. F.; Zheng, J.; Li, L. Y.; Jiang, S. Y. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 2005, 127, 14473–14478.

    Article  Google Scholar 

  25. He, Y.; Hower, J.; Chen, S. F.; Bernards, M. T.; Chang, Y.; Jiang, S. Y. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 2008, 24, 10358–10364.

    Article  Google Scholar 

  26. Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534–546.

    Article  Google Scholar 

  27. Matsuno, R.; Ishihara, K. Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today 2011, 6, 61–74.

    Article  Google Scholar 

  28. Matsuno, R.; Ishihara, K. Molecular-integrated phospholipid polymer nanoparticles with highly biofunctionality. Macromol. Symp. 2009, 279, 125–131.

    Article  Google Scholar 

  29. Zhu, Y. H.; Sundaram, H. S.; Liu, S. J.; Zhang, L.; Xu, X. W.; Yu, Q. M.; Xu, J. Q.; Jiang, S. Y. A robust graft-to strategy to form multifunctional and stealth zwitterionic polymercoated mesoporous silica nanoparticles. Biomacromolecules 2014, 15, 1845–1851.

    Article  Google Scholar 

  30. Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IRemitting gold nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 12572–12576.

    Article  Google Scholar 

  31. Liu, P. S.; Skelly, J. D.; Song, J. Three-dimensionally presented anti-fouling zwitterionic motifs sequester and enable highefficiency delivery of therapeutic proteins. Acta Biomater. 2014, 10, 4296–4303.

    Article  Google Scholar 

  32. Lewis, A.; Tang, Y. Q.; Brocchini, S.; Choi, J. W.; Godwin, A. Poly(2-methacryloyloxyethyl phosphorylcholine) for protein conjugation. Bioconjug. Chem. 2008, 19, 2144–2155.

    Article  Google Scholar 

  33. Keefe, A. J.; Jiang, S. Y. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 2012, 4, 59–63.

    Article  Google Scholar 

  34. Romberg, B.; Hennink, W. E.; Storm, G. Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 2008, 25, 55–71.

    Article  Google Scholar 

  35. Mastrobattista, E.; van der Aa, M. A. E. M.; Hennink, W. E.; Crommelin, D. J. A. Artificial viruses: A nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. 2006, 5, 115–121.

    Article  Google Scholar 

  36. Yang, W.; Liu, S. J.; Bai, T.; Keefe, A. J.; Zhang, L.; Ella-Menye, J.-R.; Li, Y. T.; Jiang, S. Y. Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymerspecific antibody production. Nano Today 2014, 9, 10–16.

    Article  Google Scholar 

  37. Bertrand, N.; Leroux, J.-C. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J. Control. Release 2012, 161, 152–163.

    Article  Google Scholar 

  38. Champion, J. A.; Katare, Y. K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Controlled Release 2007, 121, 3–9.

    Article  Google Scholar 

  39. Ruddy, S.; Gigli, I.; Austen, K. F. The complement system of man. N. Engl. J. Med. 1972, 287, 489–495.

    Article  Google Scholar 

  40. Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 1988, 57, 321–347.

    Article  Google Scholar 

  41. Yan, M.; Du, J. J.; Gu, Z.; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on singleprotein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.

    Article  Google Scholar 

  42. Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.

    Article  Google Scholar 

  43. Delves, P. J.; Martin, S. J.; Burton, D. R.; Roitt, I. M. Roitt’s Essential Immunology; Wiley-Blackwell: New York, 2011.

    Google Scholar 

  44. Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

    Article  Google Scholar 

  45. Dancey, J. E.; Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 2006, 5, 649–659.

    Article  Google Scholar 

  46. Schlesinger, N.; Yasothan, U.; Kirkpatrick, P. Pegloticase. Nat. Rev. Drug Discov. 2011, 10, 17–18.

    Article  Google Scholar 

  47. Vockley, J.; Andersson, H. C.; Antshel, K. M.; Braverman, N. E.; Burton, B. K.; Frazier, D. M.; Mitchell, J.; Smith, W. E.; Thompson, B. H.; Berry, S. A. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet. Med. 2014, 16, 188–200.

    Article  Google Scholar 

  48. Pieters, R.; Hunger, S. P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.-H. L-asparaginase treatment in acute lymphoblastic leukemia. Cancer 2011, 117, 238–249.

    Article  Google Scholar 

  49. Appel, I. M.; Kazemier, K. M.; Boos, J.; Lanvers, C.; Huijmans, J.; Veerman, A. J. P.; van Wering, E.; den Boer, M. L.; Pieters, R. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: Results from a single agent window study. Leukemia 2008, 22, 1665–1679.

    Article  Google Scholar 

  50. Rytting, M. Peg-asparaginase for acute lymphoblastic leukemia. Expert Opin. Biol. Ther. 2010, 10, 833–839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang, Linqi Shi, Xinyuan Zhu or Yunfeng Lu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Liu, Y., Jin, X. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 9, 1022–1031 (2016). https://doi.org/10.1007/s12274-016-0991-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0991-3

Keywords

Navigation