Skip to main content
Log in

Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Utilizing a nanogenerator to scavenge mechanical energy from our living environment is an effective method to solve the power source issue of portable electronics. We report a linear-grating hybridized electromagnetic-triboelectric nanogenerator for scavenging the mechanical energy generated from sliding motions to sustainably power certain portable electronics. The hybridized nanogenerator consists of a slider and a stator in the structural design, and possesses a 66-segment triboelectric nanogenerator (TENG) and a 9-segment electromagnetic generator (EMG) in the functional design. At a sliding acceleration of 20 m/s2, the hybridized nanogenerator can deliver maximum powers of 102.8 mW for the TENG at a loading resistance of 0.4 MΩ and 103.3 mW for the EMG at a loading resistance of 6 kΩ. With an optimal hybridized combination of the TENG with a transformer and the EMG with a power management circuit, a 10 mF capacitor can be easily charged to 2.8 V in 20 s. A packaged hybridized nanogenerator with a light weight of 140 g and small dimensions of 12 cm × 4 cm × 1.6 cm excels in scavenging low-frequency sliding energy to sustainably power portable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuo, A. D. Harvesting energy by improving the economy of human walking. Science 2005, 309, 1686–1687.

    Article  Google Scholar 

  2. Cima, M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014, 32, 642–643.

    Article  Google Scholar 

  3. Chun, J. S.; Kang, N.-R.; Kim, J.-Y.; Noh, M.-S.; Kang, C.-Y.; Choi, D.; Kim, S.-W.; Wang, Z. L.; Baik, J. M. Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 2015, 11, 1–10.

    Article  Google Scholar 

  4. Jung, W.-S.; Lee, M.-J.; Kang, M.-G.; Moon, H. G.; Yoon, S.-J.; Baek, S.-H.; Kang, C.-Y. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015, 13, 174–181.

    Article  Google Scholar 

  5. Rome, L. C.; Flynn, L.; Goldman, E. M.; Yoo, T. D. Generating electricity while walking with loads. Science 2005, 309, 1725–1728.

    Article  Google Scholar 

  6. Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810.

    Article  Google Scholar 

  7. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  8. Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a selfpowered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189.

    Article  Google Scholar 

  9. Yang, Y.; Wang, Z. L. Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy 2015, 14, 245–256.

    Article  Google Scholar 

  10. Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3691.

    Article  Google Scholar 

  11. Hu, Y. F.; Yang, J.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 2014, 8, 7442–7450.

    Article  Google Scholar 

  12. Zhang, K. W.; Wang, X.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521–3529.

    Article  Google Scholar 

  13. Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

    Article  Google Scholar 

  14. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 9, 974–984 (2016). https://doi.org/10.1007/s12274-016-0985-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0985-1

Keywords

Navigation