Skip to main content
Log in

Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Low-dimensional semiconductor nanostructures have attracted much interest for applications in integrated photonic and optoelectronic devices. Band gap engineering within single semiconductor nanoribbons helps to manipulate photon behavior in two different cavities (in the width and length directions) and realize new photonic phenomena and applications. In this work, lateral composition-graded semiconductor nanoribbons were grown for the first time through an improved source-moving vapor phase route. Along the width of the nanoribbon, the material can be gradually tuned from pure CdS to a highly Se-doped CdSSe alloy with a corresponding band gap modulation from 2.42 to 1.94 eV. The achieved alloy ribbons are overall high-quality crystals, and the position-dependent band-edge photoluminescence (PL) emission had a peak wavelength continuously tuned from ~515 to ~640 nm. These ribbons can realize multi-color lasing with three groups of lasing modes centered at 519, 557, and 623 nm. It was confirmed that the red lasing was from optical resonance along the length direction, while the green and yellow lasing was from optical resonance along the width direction. These novel nanoribbon structures may be applied to many integrated photonic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Singlenanowire electrically driven lasers. Nature 2003, 421, 241–245.

    Article  Google Scholar 

  2. Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506–510.

    Article  Google Scholar 

  3. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E. R.; Russo, R.; Yang, P. D. Roomtemperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

    Article  Google Scholar 

  4. Yang, Z. Y.; Xu, J. Y.; Wang, P.; Zhuang, X. J.; Pan, A. L.; Tong, L. M. On-nanowire spatial band gap design for white light emission. Nano Lett. 2011, 11, 5085–5089.

    Article  Google Scholar 

  5. Guo, P. F.; Zhuang, X. J.; Xu, J. Y.; Zhang, Q. L.; Hu, W.; Zhu, X. L.; Wang, X. X.; Wan, Q.; He, P. B.; Zhou, H. et al. Low-threshold nanowire laser based on compositionsymmetric semiconductor nanowires. Nano Lett. 2013, 13, 1251–1256.

    Article  Google Scholar 

  6. Pan, A. L.; Wang, S. Q.; Liu, R. B.; Li, C. R.; Zou, B. S. Thermal stability and lasing of CdS nanowires coated by amorphous silica. Small 2005, 1, 1058–1062.

    Article  Google Scholar 

  7. Pan, A. L.; Liu, R. B.; Sun, M. H.; Ning, C. Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 2009, 131, 9502–9503.

    Article  Google Scholar 

  8. Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

    Article  Google Scholar 

  9. Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to fieldemission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547–2552.

    Article  Google Scholar 

  10. Guo, P. F.; Hu, W.; Zhang, Q. L.; Zhuang, X. J.; Zhu, X. L.; Zhou, H.; Shan, Z. P.; Xu, J. Y.; Pan, A. L. Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors. Adv. Mater. 2014, 26, 2844–2849.

    Article  Google Scholar 

  11. Xiao, Y.; Meng, C.; Wang, P.; Ye, Y.; Yu, H. K.; Wang, S. S.; Gu, F. X.; Dai, L.; Tong, L. M. Single-nanowire single-mode laser. Nano Lett. 2011, 11, 1122–1126.

    Article  Google Scholar 

  12. Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1273.

    Article  Google Scholar 

  13. Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–923.

    Article  Google Scholar 

  14. Hollemann, G.; Braun, B.; Dorsch, F.; Hennig, P.; Heist, P.; Krause, U.; Kutschki, U.; Voelckel, H. A. RGB lasers for laser projection displays. In Proceedings of the SPIE 3954, Projection Displays 2000: Sixth in a Series, San Jose, CA, 2000, pp 140–151.

    Chapter  Google Scholar 

  15. Kotani, A.; Witek, M. A.; Osiri, J. K.; Wang, H.; Sinville, R.; Pincas, H.; Barany, F.; Soper, S. A. EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection. Anal. Methods 2012, 4, 58–64.

    Article  Google Scholar 

  16. Yan, R. X.; Park, J. H.; Choi, Y.; Heo, C. J.; Yang, S. M.; Lee, L. P.; Yang, P. D. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 2012, 7, 191–196.

    Article  Google Scholar 

  17. Xu, J. Y.; Zhuang, X. J.; Guo, P. F.; Huang, W. Q.; Hu, W.; Zhang, Q. L.; Wan, Q.; Zhu, X. L. Yang, Z. Y.; Tong, L. M. et al. Asymmetric light propagation in composition-graded semiconductor nanowires. Sci. Rep. 2012, 2, 820.

    Google Scholar 

  18. Xu, J. Y.; Ma, L.; Guo, P. F.; Zhuang, X. J.; Zhu, X. L.; Hu, W.; Duan, X. F.; Pan, A. L. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 2012, 134, 12394–12397.

    Article  Google Scholar 

  19. Zheng, Z.; Gan, L.; Li, H. Q.; Ma, Y.; Bando, Y.; Golberg, D.; Zhai, T. Y. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays. Adv. Funct. Mater. 2015, 25, 5885–5894.

    Article  Google Scholar 

  20. Yuan, X. M.; Caroff, P.; Wang, F.; Guo, Y. N.; Wang, Y. D.; Jackson, H. E.; Smith, L. M.; Tan, H. H.; Jagadish, C. Antimony induced {112}A faceted triangular GaAs1-x Sbx/InP core/shell nanowires and their enhanced optical quality. Adv. Funct. Mater. 2015, 25, 5300–5308.

    Article  Google Scholar 

  21. Thelander, C.; Mårtensson, T.; Björk, M. T.; Ohlsson, B. J.; Larsson, M. W.; Wallenberg, L. R.; Samuelson, L. Singleelectron transistors in heterostructure nanowires. Appl. Phys. Lett. 2003, 83, 2052–2054.

    Article  Google Scholar 

  22. Guo, Y. B.; Tang, Q. X.; Liu, H. B.; Zhang, Y. J.; Li, Y. L.; Hu, W. P.; Wang, S.; Zhu, D. B. Light-controlled organic/inorganic P-N junction nanowires. J. Am. Chem. Soc. 2008, 130, 9198–9199.

    Article  Google Scholar 

  23. Xu, J. Y.; Zhuang, X. J.; Guo, P. F.; Zhang, Q. L.; Huang, W. Q.; Wan, Q.; Hu, W.; Wang, X. X.; Zhu, X. L.; Fan, C. Z. et al. Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires. Nano Lett. 2012, 12, 5003–5007.

    Article  Google Scholar 

  24. Fan, F.; Liu, Z.; Yin, L.; Nichols, P. L.; Ning, H.; Turkdogan, S.; Ning, C. Z. Simultaneous two-color lasing in a single CdSSe heterostructure nanosheet. Semicond. Sci. Technol. 2013, 28, 065005.

  25. Lu, Y. Z.; Gu, F. X.; Meng, C.; Yu, H. K.; Ma, Y. G.; Fang, W.; Tong, L. M. Multicolour laser from a single bandgapgraded CdSSe alloy nanoribbon. Opt. Express 2013, 21, 22314–22319.

    Article  Google Scholar 

  26. Island, J. O.; Buscema, M.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; Ferrer, I. J.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv. Opt. Mater. 2014, 2, 641–645.

    Article  Google Scholar 

  27. Fan, F.; Turkdogan, S.; Liu, Z. C.; Shelhammer, D.; Ning, C. Z. A monolithic white laser. Nat. Nanotechnol. 2015, 10, 796–803.

    Article  Google Scholar 

  28. Pan, A. L.; Yang, H.; Liu, R. B.; Yu, R. C.; Zou, B. S.; Wang, Z. L. Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts. J. Am. Chem. Soc. 2005, 127, 15692–15693.

    Article  Google Scholar 

  29. Khallaf, H.; Chai, G.; Lupan, O.; Chow, L.; Park, S.; Schulte, A. Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films. J. Phys. D 2008, 41, 185304.

  30. Moore, D.; Roning, C.; Ma, C.; Wang, Z. L. Wurtzite ZnS nanosaws produced by polar surfaces. Chem. Phys. Lett. 2004, 385, 8–11.

    Article  Google Scholar 

  31. Ma, C.; Ding, Y.; Moore, D.; Wang, X. D.; Wang, Z. L. Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 2004, 126, 708–709.

    Article  Google Scholar 

  32. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P. X.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.

    Article  Google Scholar 

  33. Ding, Y; Ma, C; Wang, Z. L. Self-catalysis and phase transformation in the formation of CdSe nanosaws. Adv. Mater. 2004, 16, 1740–1743.

    Article  Google Scholar 

  34. Dong, L. F.; Jiao, J.; Coulter, M.; Love, L. Catalytic growth of CdS nanobelts and nanowires on tungsten substrates. Chem. Phys. Lett. 2003, 376, 653–658.

    Article  Google Scholar 

  35. Liu, W. F.; Jin, C. G.; Jia, C.; Yao, L. Z.; Cai, W. L.; Li, X. G. CdS nanobelts on Si substrate. Chem. Lett. 2004, 33, 228–229.

    Article  Google Scholar 

  36. Ma, C.; Moore, D.; Ding, Y.; Li, J.; Wang, Z. L. Nanobelt and nanosaw structures of II-VI semiconductors. Int. J. Nanotechnology 2004, 1, 431–451.

    Article  Google Scholar 

  37. Gu, F. X.; Yang, Z. Y.; Yu, H. K.; Xu, J. Y.; Wang, P.; Tong, L. M.; Pan, A. L. Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 2011, 133, 2037–2039.

    Article  Google Scholar 

  38. Siegman, A. E. Lasers; Oxford University Press: Oxford, 1986.

    Google Scholar 

  39. Li, J. B.; Meng, C.; Liu, Y.; Wu, X. Q.; Lu, Y. Z.; Ye, Y.; Dai, L.; Tong, L. M.; Liu, X.; Yang, Q. Wavelength tunable CdSe nanowire lasers based on the absorption-emissionabsorption process. Adv. Mater. 2013, 25, 833–837.

    Article  Google Scholar 

  40. Zimmler, M. A.; Bao, J. M.; Capasso, F.; Muller, S.; Ronning, C. Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 2008, 93, 051101.

  41. Liu, X. F.; Zhang, Q.; Xiong, Q. H.; Sum, T. C. Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. Nano Lett. 2013, 13, 1080–1085.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anlian Pan.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, X., Guo, P., Zhang, Q. et al. Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. Nano Res. 9, 933–941 (2016). https://doi.org/10.1007/s12274-015-0977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0977-6

Keywords

Navigation