Nano Research

, Volume 8, Issue 10, pp 3307–3315

Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

  • Daniela P. Lobo
  • Alan M. Wemyss
  • David J. Smith
  • Anne Straube
  • Kai B. Betteridge
  • Andrew H. J. Salmon
  • Rebecca R. Foster
  • Hesham E. Elhegni
  • Simon C. Satchell
  • Haydn A. Little
  • Raúl Pacheco-Gómez
  • Mark J. Simmons
  • Matthew R. Hicks
  • David O. Bates
  • Alison Rodger
  • Timothy R. Dafforn
  • Kenton P. Arkill
Open Access
Research Article

DOI: 10.1007/s12274-015-0831-x

Cite this article as:
Lobo, D.P., Wemyss, A.M., Smith, D.J. et al. Nano Res. (2015) 8: 3307. doi:10.1007/s12274-015-0831-x

Abstract

The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature’s primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics.

Keywords

microfluidics nanoparticle M13 bacteriophage wall shear stress fluorescent microscopy 
Download to read the full article text

Supplementary material

12274_2015_831_MOESM1_ESM.pdf (771 kb)
Supplementary material, approximately 771 KB.
12274_2015_831_MOESM2_ESM.mp4 (4.4 mb)
Supplementary material, approximately 4.6 MB.
12274_2015_831_MOESM3_ESM.mp4 (4.8 mb)
Supplementary material, approximately 5 MB.

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniela P. Lobo
    • 1
  • Alan M. Wemyss
    • 1
    • 2
  • David J. Smith
    • 3
  • Anne Straube
    • 4
  • Kai B. Betteridge
    • 5
  • Andrew H. J. Salmon
    • 5
  • Rebecca R. Foster
    • 6
  • Hesham E. Elhegni
    • 6
  • Simon C. Satchell
    • 6
  • Haydn A. Little
    • 7
  • Raúl Pacheco-Gómez
    • 8
  • Mark J. Simmons
    • 9
  • Matthew R. Hicks
    • 8
  • David O. Bates
    • 10
  • Alison Rodger
    • 1
  • Timothy R. Dafforn
    • 8
  • Kenton P. Arkill
    • 11
  1. 1.Department of Chemistry and Warwick Analytical Science CentreUniversity of WarwickCoventryUK
  2. 2.MOAC Doctoral Training CentreUniversity of WarwickCoventryUK
  3. 3.MathematicsUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  4. 4.Centre for Mechanochemical Cell Biology, Warwick Medical SchoolUniversity of WarwickCoventryUK
  5. 5.Physiology and PharmacologyUniversity of BristolBristolUK
  6. 6.Clinical SciencesUniversity of BristolBristolUK
  7. 7.School of ChemistryUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  8. 8.BiosciencesUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  9. 9.Chemical EngineeringUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  10. 10.School of MedicineUniversity of Nottingham, Queen’s Medical CentreNottinghamUK
  11. 11.BiochemistryUniversity of BristolBristolUK

Personalised recommendations