Skip to main content
Log in

Achieving large transport bandgaps in bilayer graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Since opening sizable bandgaps in bilayer graphene (BLG) was proven possible, BLG has attracted considerable attention as a promising high-mobility candidate material for many electronic and optoelectronic applications. However, the bandgaps observed in the transport experiments reported in the literature are far smaller than both the theoretical predictions and the bandgaps extracted from optical measurements. In this study, we investigate the factors preventing the formation of large bandgaps and demonstrate that a ~200-meV transport bandgap can be opened in BLG by scaling the gate dielectric and employing a ribbon channel to suppress the percolative transport. This is the largest transport bandgap that has been achieved in BLG to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Min, H.; Sahu, B. R.; Banerjee, S. K.; Macdonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 2007, 75, 155115.

    Article  Google Scholar 

  3. Mccann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.

    Article  Google Scholar 

  4. Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; dos Santos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

    Article  Google Scholar 

  5. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science. 2006, 313, 951–954.

    Article  Google Scholar 

  6. Zhang, Y. B.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.

    Article  Google Scholar 

  7. Zhang, L. M.; Li, Z. Q.; Basov, D. N.; Fogler, M. M.; Hao, Z.; Martin, M. C. Determination of the electronic structure of bilayer graphene from infrared spectroscopy results. Phys. Rev. B 2008, 78, 235408.

    Article  Google Scholar 

  8. Xia, F. N.; Farmer, D. B.; Lin, Y.-M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715–718.

    Article  Google Scholar 

  9. Yan, J.; Fuhrer, M. S. Charge transport in dual gated bilayer graphene with Corbino geometry. Nano Lett. 2010, 10, 4521–4525.

    Article  Google Scholar 

  10. Taychatanapat, T.; Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 2010, 105, 166601.

    Article  Google Scholar 

  11. Russo, S.; Craciun, M. F.; Yamamoto, M.; Tarucha, S.; Morpurgo, A. F. Double-gated graphene-based devices New J. Phys. 2009, 11, 095018.

    Article  Google Scholar 

  12. Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S. Tuneable electronic properties in graphene. Nano Today 2011, 6, 42–60.

    Article  Google Scholar 

  13. Shioya, H.; Yamamoto, M Russo, S.; Craciun, M. F.; Tarucha, S. Gate tunable non-linear currents in bilayer graphene diodes. Appl. Phys. Lett. 2012, 100, 033113.

    Article  Google Scholar 

  14. Lin, J. H.; Fang, W. J.; Zhou, W.; Lupini, A. R.; Idrobo, J. C.; Kong, J.; Pennycook, S. J.; Pantelides, S. T. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 2013, 13, 3262–3268.

    Article  Google Scholar 

  15. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Elsevier, B.V. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

    Article  Google Scholar 

  16. Kim, K.; Coh, S.; Tan, L. Z.; Regan, W.; Yuk, J. M.; Chatterjee, E.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103.

    Google Scholar 

  17. Alden, J. S.; Tsen, A. W.; Huang, P. Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D. A.; McEuen, P. L. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 2013, 110, 11256–11260.

    Article  Google Scholar 

  18. San-Jose, P.; Gorbachev, R. V.; Geim, A. K.; Novoselov, K. S.; Guinea, F. Stacking boundaries and transport in bilayer graphene. Nano Lett. 2014, 14, 2052–2057.

    Article  Google Scholar 

  19. Zou, K.; Zhang, F.; Clapp, C.; MacDonald, A. H.; Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: Band gap opening and band structure tuning in very large perpendicular electric field. Nano Lett. 2013, 13, 369–373.

    Article  Google Scholar 

  20. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.; Yacoby, A. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.

    Article  Google Scholar 

  21. Sui, Y.; Low, T.; Lundstrom, M.; Appenzeller, J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett. 2011, 11, 1319–1322.

    Article  Google Scholar 

  22. Deshpande, A.; Bao, W.; Zhao, Z.; Lau, C. N.; LeRoy, B. J. Mapping the Dirac point in gated bilayer graphene. Appl. Phys. Lett. 2009, 95, 243502.

    Article  Google Scholar 

  23. Yu, W. J.; Duan, X. F. Tunable transport gap in narrow bilayer graphene nanoribbons. Sci. Rep. 2013, 3, 1248.

    Google Scholar 

  24. Szafranek, B. N.; Fiori, G.; Schall, D.; Neumaier, D.; Kurz, H. Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 2012, 12, 1324–1328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, T., Chen, Z. Achieving large transport bandgaps in bilayer graphene. Nano Res. 8, 3228–3236 (2015). https://doi.org/10.1007/s12274-015-0823-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0823-x

Keywords

Navigation