Skip to main content
Log in

Tailoring thermal conductivity by engineering compositional gradients in Si1−x Ge x superlattices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The transport properties of artificially engineered superlattices (SLs) can be tailored by incorporating a high density of interfaces in them. Specifically, SiGe SLs with low thermal conductivity values have great potential for thermoelectric generation and nano-cooling of Si-based devices. Here, we present a novel approach for customizing thermal transport across nanostructures by fabricating Si/Si1−x Ge x SLs with well-defined compositional gradients across the SiGe layer from x = 0 to 0.60. We demonstrate that the spatial inhomogeneity of the structure has a remarkable effect on the heat-flow propagation, reducing the thermal conductivity to ∼2.2 W·m−1·K−1, which is significantly less than the values achieved previously with non-optimized long-period SLs. This approach offers further possibilities for future applications in thermoelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.

    Article  Google Scholar 

  2. Zhao, L. D.; Wu, H. J.; Hao, S. Q.; Wu, C. I.; Zhou, X. Y.; Biswas, K.; He, J. Q.; Hogan, T. P.; Uher, C.; Wolverton, C. et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 2013, 6, 3346–3355.

    Article  Google Scholar 

  3. Balasubramanian, G.; Puri, I. K.; Böhm, M. C.; Leroy, F. Thermal conductivity reduction through isotope substitution in nanomaterials: Predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Nanoscale 2011, 3, 3714–3720.

    Article  Google Scholar 

  4. Zhang, G.; Li, B. W. Impacts of doping on thermal and thermoelectric properties of nanomaterials. Nanoscale 2010, 2, 1058–1068.

    Article  Google Scholar 

  5. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.

    Article  Google Scholar 

  6. Rowe, D. M.; Fu, L. W.; Williams, S. G. K. Comments on the thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 1993, 73, 4683–4685.

    Article  Google Scholar 

  7. Joshi, G.; Lee, H.; Lan, Y. C.; Wang, X. W.; Zhu, G. H.; Wang, D. Z.; Gould, R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S. et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670–4674.

    Article  Google Scholar 

  8. Lee, S. M.; Cahill, D. G.; Venkatasubramanian, R. Thermal conductivity of Si-Ge superlattices. Appl. Phys. Lett. 1997, 70, 2957–2959.

    Article  Google Scholar 

  9. Borca-Tasciuc, T.; Liu, W.; Liu, J. L.; Zeng, T. F.; Song, D. W.; Moore, C. D.; Chen, G.; Wang, K. L.; Goorsky, M. S.; Radetic, T. et al. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattice. Microst. 2000, 28, 199–206.

    Article  Google Scholar 

  10. Huxtable, S. T.; Abramson, A. R.; Tien, C. L.; Majumdar, A.; LaBounty, C.; Fan, X.; Zeng, G. H.; Bowers, J. E.; Shakouri, A.; Croke, E. T. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl. Phys. Lett. 2002, 80, 1737–1739.

    Article  Google Scholar 

  11. Chakraborty, S.; Kleint, C. A.; Heinrich, A.; Schneider, C. M.; Schumann, J.; Falke, M.; Teichert, S. Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111). Appl. Phys. Lett. 2003, 83, 4184–4186.

    Article  Google Scholar 

  12. Liu, C. K.; Yu, C. K.; Chien, H. C.; Kuo, S. L.; Hsu, C. Y.; Dai, M. J.; Luo, L. G.; Huang, S. C.; Huang, M. J. Thermal conductivity of Si/SiGe superlattice films. J. Appl. Phys. 2008, 104, 114301.

    Article  Google Scholar 

  13. Pernot, G.; Stoffel, M.; Savic, I.; Pezzoli, F.; Chen, P.; Savelli, G.; Jacquot, A.; Schumann, J.; Denker, U.; Moench, I. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 2010, 9, 491–495.

    Article  Google Scholar 

  14. Chen, P. X.; Katcho, N. A.; Feser, J. P.; Li, W.; Glaser, M.; Schmidt, O. G.; Cahill, D. G.; Mingo, N.; Rastelli, A. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys. Rev. Lett. 2013, 111, 115901.

    Article  Google Scholar 

  15. Liu, J. L.; Khitun, A; Wang, K. L.; Liu, W. L.; Chen, G.; Xie, Q. H.; Thomas, S. G. Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices. Phys. Rev. B 2003, 67, 165333.

    Article  Google Scholar 

  16. Alvarez-Quintana, J.; Alvarez, X.; Rodriguez-Viejo, J.; Jou, D.; Lacharmoise, P. D.; Bernardi, A.; Goñi, A. R.; Alonso, M. I. Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattices. Appl. Phys. Lett. 2008, 93, 013112.

    Article  Google Scholar 

  17. Chang, H. T.; Wang, S. Y.; Lee, S. W. Designer Ge/Si composite quantum dots with enhanced thermoelectric properties. Nanoscale 2014, 6, 3593–3598.

    Article  Google Scholar 

  18. Cecchi, S.; Etzelstorfer, T.; Müller, E.; Samarelli, A.; Llin, L. F.; Chrastina, D.; Isella, G.; Stangl, J.; Paul, D. J. Ge/SiGe superlattices for thermoelectric energy conversion devices. J. Mater. Sci. 2013, 48, 2829–2835.

    Article  Google Scholar 

  19. Samarelli, A.; Llin, L. F.; Cecchi, S.; Frigerio, J.; Etzelstorfer, T.; Mueller, E.; Zhang, Y.; Watling, J. R.; Chrastina, D.; Isella, G. et al. The thermoelectric properties of Ge/SiGe modulation doped superlattices. J. Appl. Phys. 2013, 113, 233704.

    Article  Google Scholar 

  20. Kiselev, A. A.; Kim, K. W.; Stroscio, M. A. Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell. Phys. Rev. B 2000, 62, 6896–6899.

    Article  Google Scholar 

  21. Broido, D. A.; Reinecke, T. L. Lattice thermal conductivity of superlattice structures. Phys. Rev. B 2004, 70, 081310.

    Article  Google Scholar 

  22. Garg, J.; Bonini N.; Marzari N. High thermal conductivity in short-period superlattices. Nano Lett. 2011, 11, 5135–5141.

    Article  Google Scholar 

  23. Savic, I.; Donadio, D.; Gyg, F.; Galli, G. Dimensionality and heat transport in Si-Ge superlattices. Appl. Phys. Lett. 2013, 102, 073113.

    Article  Google Scholar 

  24. Alvarez, F. X.; Alvarez-Quintana, J.; Jou, D.; Viejo, J. R. Analytical expression for thermal conductivity of superlattices. J. Appl. Phys. 2010, 107, 084303.

    Article  Google Scholar 

  25. Cheaito, R.; Duda, J. C.; Beechem, T. E.; Hattar, K.; Ihlefeld, J. F.; Medlin, D. L.; Rodriguez, M. A.; Campion, M. J.; Michael, J.; Piekos, E. S. et al. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films. Phys. Rev. Lett. 2012, 109, 195901.

    Article  Google Scholar 

  26. Cahill, D. G.; Fisher, H. E.; Klitsner T.; Swartz, E. T.; Pohl, R. O. Thermal conductivity of a-Si:H thin films. Phys. Rev. B 1994, 50, 6077–6081.

    Article  Google Scholar 

  27. Alvarez-Quintana J.; Rodríguez-Viejo J. Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sensor Actuat. A 2008, 142, 232–236.

    Article  Google Scholar 

  28. Tong, T.; Majumdar A. Reexamining the 3-omega technique for thin film thermal characterization. Rev. Sci. Inst. 2006, 77, 104902.

    Article  Google Scholar 

  29. Zhylik, A.; Benediktovich, A.; Ulyanenkov, A.; Guerault, H.; Myronov, M.; Dobbie, A.; Leadley, D. R.; Ulyanenkova, T. High-resolution X-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates. J. Appl. Phys. 2011, 109, 123714.

    Article  Google Scholar 

  30. Watling, J. R.; Douglas, J. P. A study of the impact of dislocations on the thermoelectric properties of quantum wells in the Si/SiGe materials system. J. Appl. Phys. 2011, 110, 114508.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aitor F. Lopeandía, Francesc Xavier Alvarez or Javier Rodriguez-Viejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrando-Villalba, P., Lopeandía, A.F., Alvarez, F.X. et al. Tailoring thermal conductivity by engineering compositional gradients in Si1−x Ge x superlattices. Nano Res. 8, 2833–2841 (2015). https://doi.org/10.1007/s12274-015-0788-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0788-9

Keywords

Navigation