Skip to main content
Log in

Decoratable hybrid-film-patch stabilized Pickering emulsions and their catalytic applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrated a method to fabricate functional hybrid film patches that were used to form Pickering emulsions (PEs). The hybrid patches were made of carbon nanotubes, Fe3O4 nanoparticles, octadecyltrimethoxysilane, and poly(diallyldimethylammonium chloride). The aqueous phase of the hybrid-patch stabilized PEs can be easily separated by applying a magnetic field. The hybrid-film-patch stabilized PEs are extremely stable and lasted for eight months at room temperature. Furthermore, they are easily ruptured by adding ethanol, and regenerated by vortexing the patches in aqueous/oil mixtures, enabling the inner hydrophilic side of the patches to be easily modified with metal nanoparticles. As an example, palladium nanoparticles were embedded into the surface of the hybrid patches using an in situ reduction method. The Pd functionalized patch formed PEs showed an excellent catalytic performance for the hydrogenation of acetone with a yield of 99.5%. The same batch of Pd functionalized patches was recycled 13 times without loss of the catalytic activity. The hybrid-patch formed PEs have a great potential in the catalytic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binks, B. P.; Horozov, T. S. Colloidal particles at liquid interfaces; Cambridge University Press: Cambridge, UK, 2006.

    Book  Google Scholar 

  2. Pickering, S. U. M. Cxcvi.-emulsions. J. Chem. Soc. T. 1907, 91, 2001–2021.

    Article  Google Scholar 

  3. Wang, H. L.; Zhu, X. M.; Tsarkova, L.; Pich, A.; Möller, M. All-silica colloidosomes with a particle-bilayer shell. ACS Nano 2011, 5, 3937–3942.

    Article  Google Scholar 

  4. Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 2010, 327, 68–72.

    Article  Google Scholar 

  5. Yang, H. Q.; Zhou, T.; Zhang, W. J. A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion. Angew. Chem. Int. Ed. 2013, 125, 7603–7607.

    Article  Google Scholar 

  6. Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 2002, 298, 1006–1009.

    Article  Google Scholar 

  7. Gu, X. Y.; Ning, Y.; Yang, Y.; Wang, C. Y. One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery. RSC Adv. 2014, 4, 3211–3218.

    Article  Google Scholar 

  8. Frelichowska, J.; Bolzinger, M. A.; Valour, J. P.; Mouaziz, H.; Pelletier, J.; Chevalier, Y. Pickering w/o emulsions: Drug release and topical delivery. Int. J. Pharm. 2009, 368, 7–15.

    Article  Google Scholar 

  9. Chen, H. B.; Zhu, H. D.; Hu, J. D.; Zhao, Y. B.; Wang, Q.; Wan, J. L.; Yang, Y. J.; Xu, H. B.; Yang, X. L. Highly compressed assembly of deformable nanogels into nanoscale suprastructures and their application in nanomedicine. ACS Nano 2011, 5, 2671–2680.

    Article  Google Scholar 

  10. Calderó, G.; García-Celma, M. J.; Solans, C.; Plaza, M.; Pons, R. Influence of composition variables on the molecular diffusion from highly concentrated water-in-oil emulsions (gel-emulsions). Langmuir 1997, 13, 385–390.

    Article  Google Scholar 

  11. Patravale, V. B.; Mandawgade, S. D. Novel cosmetic delivery systems: An application update. Int. J. Cosmetic Sci. 2008, 30, 19–33.

    Article  Google Scholar 

  12. Chevalier, Y.; Bolzinger, M. A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloid. Surface. A 2013, 439, 23–34.

    Article  Google Scholar 

  13. Pan, J. M.; Li, L. Z.; Hang, H.; Wu, R. R.; Dai, X. H.; Shi, W. D.; Yan, Y. S. Fabrication and evaluation of magnetic/hollow double-shelled imprinted sorbents formed by Pickering emulsion polymerization. Langmuir 2013, 29, 8170–8178.

    Article  Google Scholar 

  14. Shen, M.; Resasco, D. E. Emulsions stabilized by carbon nanotube–silica nanohybrids. Langmuir 2009, 25, 10843–10851.

    Article  Google Scholar 

  15. Tan, H. Y.; Zhang, P.; Wang, L.; Yang, D.; Zhou, K. B. Multifunctional amphiphilic carbonaceous microcapsules catalyze water/oil biphasic reactions. Chem. Commun. 2011, 47, 11903–11905.

    Article  Google Scholar 

  16. Yu, C.; Fan, L. M.; Yang, J.; Shan, Y. Y.; Qiu, J. S. Phase-reversal emulsion catalysis with CNT–TiO2 nanohybrids for the selective oxidation of benzyl alcohol. Chem. Eur. J. 2013, 19, 16192–16195.

    Article  Google Scholar 

  17. Zhai, W. Y.; Li, G. P.; Yu, P.; Yang, L. F.; Mao, L. Q. Silver phosphate/carbon nanotube-stabilized Pickering emulsion for highly efficient photocatalysis. J. Phys. Chem. C 2013, 117, 15183–15191.

    Article  Google Scholar 

  18. Binks, B. P.; Lumsdon, S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 2000, 16, 8622–8631.

    Article  Google Scholar 

  19. Shi, J. F.; Wang, X. L.; Zhang, W. Y.; Jiang, Z. Y.; Liang, Y. P.; Zhu, Y. Y.; Zhang, C. H. Synergy of Pickering emulsion and sol-gel process for the construction of an efficient, recyclable enzyme cascade system. Adv. Funct. Mater. 2013, 23, 1450–1458.

    Article  Google Scholar 

  20. Chen, T.; Colver, P. J.; Bon, S. A. F. Organic–inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization. Adv. Mater. 2007, 19, 2286–2289.

    Article  Google Scholar 

  21. Wu, C. Z.; Bai, S.; Ansorge-Schumacher, M. B.; Wang, D. Y. Nanoparticle cages for enzyme catalysis in organic media. Adv. Mater. 2011, 23, 5694–5699.

    Article  Google Scholar 

  22. Zhou, W. J.; Fang, L.; Fan, Z.; Albela, B.; Bonneviot, L.; De Campo, F.; Pera-Titus, M.; Clacens, J. M. Tunable catalysts for solvent-free biphasic systems: Pickering interfacial catalysts over amphiphilic silica nanoparticles. J. Am. Chem. Soc. 2014, 136, 4869–4872.

    Article  Google Scholar 

  23. Reger, M.; Sekine, T.; Okamoto, T.; Watanabe, K.; Hoffmann, H. Pickering emulsions stabilized by novel clay-hydrophobin synergism. Soft Matter 2011, 7, 11021–11030.

    Article  Google Scholar 

  24. Zhou, J.; Qiao, X. Y.; Binks, B. P.; Sun, K.; Bai, M. W.; Li, Y. L.; Liu, Y. Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles. Langmuir 2011, 27, 3308–3316.

    Article  Google Scholar 

  25. Wang, Z. P.; van Oers, M. C. M.; Rutjes, F. P. J. T.; van Hest, J. C. M. Polymersome colloidosomes for enzyme catalysis in a biphasic system. Angew. Chem. Int. Ed. 2012, 51, 10746–10750.

    Article  Google Scholar 

  26. Tu, F. Q.; Lee, D. Shape-changing and amphiphilicityreversing Janus particles with pH-responsive surfactant properties. J. Am. Chem. Soc. 2014, 136, 9999–10006.

    Article  Google Scholar 

  27. Wongkongkatep, P.; Manopwisedjaroen, K.; Tiposoth, P.; Archakunakorn, S.; Pongtharangkul, T.; Suphantharika, M.; Honda, K.; Hamachi, I.; Wongkongkatep, J. Bacteria interface Pickering emulsions stabilized by self-assembled bacteria–chitosan network. Langmuir 2012, 28, 5729–5736.

    Article  Google Scholar 

  28. Binks, B. P.; Clint, J. H.; Mackenzie, G.; Simcock, C.; Whitby, C. P. Naturally occurring spore particles at planar fluid interfaces and in emulsions. Langmuir 2005, 21, 8161–8167.

    Article  Google Scholar 

  29. Liang, F. X.; Shen, K.; Qu, X. Z.; Zhang, C. Q.; Wang, Q.; Li, J. L.; Liu, J. G.; Yang, Z. Z. Inorganic Janus nanosheets. Angew. Chem. Int. Ed. 2011, 50, 2379–2382.

    Article  Google Scholar 

  30. Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 117, 2842–2845.

    Article  Google Scholar 

  31. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2007, 130, 28–29.

    Article  Google Scholar 

  32. Avilés, F.; Cauich-Rodríguez, J. V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47, 2970–2975.

    Article  Google Scholar 

  33. Ma, S. H.; Yong, D. M.; Zhang, Y.; Wang, X. J.; Han, X. J. A universal approach for the reversible phase transfer of hydrophilic nanoparticles. Chem. Eur. J. 2014, 20, 15580–15586.

    Article  Google Scholar 

  34. Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chem. Int. Ed. 2004, 43, 458–462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Han.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Wang, Y., Jiang, K. et al. Decoratable hybrid-film-patch stabilized Pickering emulsions and their catalytic applications. Nano Res. 8, 2603–2610 (2015). https://doi.org/10.1007/s12274-015-0765-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0765-3

Keywords

Navigation