Skip to main content
Log in

Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity

Nano Research Aims and scope Submit manuscript

Abstract

Using Te nanowires as a sacrificial template, we developed a facile wet-chemical method for the synthesis of bimetallic PtCu nanowires. The as-prepared PtCu nanowires possess a porous structure and high aspect ratio. Transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, energy dispersive X-ray spectrum elemental mapping, inductively coupled plasmamass spectroscopy, and X-ray photoelectron spectroscopy (XPS) measurement techniques are used to analyze the structure and composition of the as-prepared nanowires. The XPS results verify that the incorporation of Cu led to the modified electronic state of Pt. Electrocatalytic results prove that the as-prepared nanowires present superior activity for methanol and ethanol electrooxidation in an alkaline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2009, 2, 915–931.

    Article  Google Scholar 

  2. Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578.

    Article  Google Scholar 

  3. Singh, R. N.; Awasthi, R. Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation. Catal. Sci. Technol. 2011, 1, 778–783.

    Article  Google Scholar 

  4. Hong, W.; Liu, Y. Q.; Wang, J.; Wang, E. K. A new kind of highly active hollow flower-like NiPdPt nanoparticles supported by multiwalled-carbon nanotubes toward ethanol electrooxidation. J. Power Sources 2013, 241, 751–755.

    Article  Google Scholar 

  5. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    Article  Google Scholar 

  6. Antolini, E.; Gonzalez, E. R. Alkaline direct alcohol fuel cells. J. Power Sources 2010, 195, 3431–3450.

    Article  Google Scholar 

  7. Qian, W. M.; Wilkinson, D. P.; Shen, J.; Wang, H. J.; Zhang, J. J. Architecture for portable direct liquid fuel cells. J. Power Sources 2006, 154, 202–213.

    Article  Google Scholar 

  8. Guo, S. J.; Dong, S. J.; Wang, E. K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307–1310.

    Article  Google Scholar 

  9. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  Google Scholar 

  10. Lai, S. C. S.; Koper, M. T. M. Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 2009, 11, 10446–10456.

    Article  Google Scholar 

  11. Si, W. F.; Li, J.; Li, H. Q.; Li, S. S.; Yin, J.; Xu, H.; Guo, X. W.; Zhang, T.; Song, Y. J. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.

    Article  Google Scholar 

  12. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  13. Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730–5733.

    Article  Google Scholar 

  14. Hu, Y. J.; Shao, Q.; Wu, P.; Zhang, H.; Cai, C. X. Synthesis of hollow mesoporous Pt–Ni nanosphere for highly active electrocatalysis toward the methanol oxidation reaction. Electrochem. Commun. 2012, 18, 96–99.

    Article  Google Scholar 

  15. Wang, K. L.; Wang, H.; Pasupathi, S.; Linkov, V.; Ji, S.; Wang, R. F. Palygorskite promoted PtSn/carbon catalysts and their intrinsic catalytic activity for ethanol oxidation. Electrochim. Acta 2012, 70, 394–401.

    Article  Google Scholar 

  16. Yin, A. X.; Min, X. Q.; Zhang, Y. W.; Yan, C. H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 2011, 133, 3816–3819.

    Article  Google Scholar 

  17. Yin, A. X.; Min, X. Q.; Zhu, W.; Wu, H. S.; Zhang, Y. W.; Yan, C. H. Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation. Chem. Commun. 2012, 48, 543–545.

    Article  Google Scholar 

  18. Ji, H. Q.; Li, M. G.; Wang, Y. L.; Gao, F. Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity. Electrochem. Commun. 2012, 24, 17–20.

    Article  Google Scholar 

  19. Yang, H. Z.; Zhang, J.; Sun, K.; Zou, S. Z.; Fang, J. Y. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chem. Int. Ed. 2010, 49, 6848–6851.

    Article  Google Scholar 

  20. Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

    Article  Google Scholar 

  21. Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew. Chem. Int. Ed. 2009, 48, 4217–4221.

    Article  Google Scholar 

  22. Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y. Y.; Jin, C. H.; Fu, M. S.; Zhang, H.; Yang, D. R. Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem. Commun. 2014, 50, 560–562.

    Article  Google Scholar 

  23. Hong, J. W.; Kim, D.; Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 8876–8880.

    Article  Google Scholar 

  24. Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

    Article  Google Scholar 

  25. Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. 2010, 49, 411–414.

    Article  Google Scholar 

  26. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  Google Scholar 

  27. Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem.—Eur. J. 2012, 18, 777–782.

    Article  Google Scholar 

  28. Gong, M. X.; Fu, G. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308.

    Article  Google Scholar 

  29. Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem. Commun. 2011, 47, 8094–8096.

    Article  Google Scholar 

  30. Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.

    Article  Google Scholar 

  31. Alia, S. M.; Jensen, K.; Contreras, C.; Garzon, F.; Pivovar, B.; Yan, Y. S. Platinum coated copper nanowires and platinum nanotubes as oxygen reduction electrocatalysts. ACS Catal. 2013, 3, 358–362.

    Article  Google Scholar 

  32. Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem. Int. Ed. 2012, 51, 7213–7216.

    Article  Google Scholar 

  33. Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262–3265.

    Article  Google Scholar 

  34. Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2014, 6, 9481–9487.

    Article  Google Scholar 

  35. Lee, K. B.; Lee, S. M.; Cheon, J. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration. Adv. Mater. 2001, 13, 517–520.

    Article  Google Scholar 

  36. Mayers, B.; Jiang, X. C.; Sunderland, D.; Cattle, B.; Xia, Y. N. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J. Am. Chem. Soc. 2003, 125, 13364–13365.

    Article  Google Scholar 

  37. Sun, Y. G.; Tao, Z. L.; Chen, J.; Herricks, T.; Xia, Y. N. Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. J. Am. Chem. Soc. 2004, 126, 5940–5941.

    Article  Google Scholar 

  38. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

    Article  Google Scholar 

  39. Wang, K.; Yang, Y.; Liang, H. W.; Liu, J. W.; Yu, S. H. First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Mater. Horiz. 2014, 1, 338–343.

    Article  Google Scholar 

  40. Liang, H. W.; Liu, S.; Gong, J. Y.; Wang, S. B.; Wang, L.; Yu, S. H. Ultrathin Te nanowires: An excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv. Mater. 2009, 21, 1850–1854.

    Article  Google Scholar 

  41. Zhu, C. Z.; Guo, S. J.; Dong, S. J. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326–2331.

    Article  Google Scholar 

  42. Cao, X.; Wang, N.; Jia, S.; Shao, Y. H. Detection of glucose based on bimetallic PtCu nanochains modified electrodes. Anal. Chem. 2013, 85, 5040–5046.

    Article  Google Scholar 

  43. Mintsouli, I.; Georgieva, J.; Armyanov, S.; Valova, E.; Avdeev, G.; Hubin, A.; Steenhaut, O.; Dille, J.; Tsiplakides, D.; Balomenou, S. et al. Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors. Appl. Catal. B 2013, 136–137, 160–167.

    Article  Google Scholar 

  44. Liu, D.; Yang, L.; Huang, J. S.; Guo, Q. H.; You, T. Y. Synthesis of Pt nanoparticle-loaded 1-aminopyrene functionalized reduced graphene oxide and its excellent electrocatalysis. RSC Adv. 2014, 4, 13733–13737.

    Google Scholar 

  45. Yao, Z. Q.; Yue, R. R.; Zhai, C. Y.; Jiang, F. X.; Wang, H. W.; Du, Y. K.; Wang, C. Y.; Yang, P. Electrochemical layer-by-layer fabrication of a novel three-dimensional Pt/graphene/carbon fiber electrode and its improved catalytic performance for methanol electrooxidation in alkaline medium. Int. J. Hydrogen Energy 2013, 38, 6368–6376.

    Article  Google Scholar 

  46. Wang, L.; Yamauchi, Y. Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem.—Eur. J. 2011, 17, 8810–8815.

    Article  Google Scholar 

  47. Xu, C. W.; Wang, H.; Shen, P. K.; Jiang, S. P. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv. Mater. 2007, 19, 4256–4259.

    Article  Google Scholar 

  48. Kim, Y.; Lee, Y. W.; Kim, M.; Han, S. W. One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies. Chem.—Eur. J. 2014, 20, 7901–7905.

    Article  Google Scholar 

  49. Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. Int. Ed. 2013, 52, 7472–7476.

    Article  Google Scholar 

  50. Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. Pt-M (M = Cu, Co, Ni, Fe) nanocrystals: From small nanoparticles to wormlike nanowires by oriented attachment. Chem.—Eur. J. 2013, 19, 233–239.

    Article  Google Scholar 

  51. Lai, S. C. S.; Koper, M. T. M. Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 2009, 11, 10446–10456.

    Article  Google Scholar 

  52. Liang, Z. X.; Zhao, T. S.; Xu, J. B.; Zhu, L. D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 2009, 54, 2203–2208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Wang or Erkang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Wang, J. & Wang, E. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 8, 2308–2316 (2015). https://doi.org/10.1007/s12274-015-0741-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0741-y

Keywords

Navigation