Skip to main content
Log in

Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites

Nano Research Aims and scope Submit manuscript

Abstract

Using spark plasma sintering (SPS), Mn3Cu0.6Ge0.4N crystallites have been fabricated with different crystallite sizes, and their magnetic properties and thermal behaviors were systemically investigated. With decreasing crystallite size, the magnetic transition becomes increasingly slow, accompanied by broadening of the negative thermal expansion (NTE) operation-temperature window. The NTE operation-temperature window for the 12-nm crystallite sample reaches at 140 K, which is about 75% larger than that of the 74-nm crystallite sample. The magnetic properties and NTE operation-temperature window can be tuned by varying the crystallite size. This discovery will promote an even wider range of practical applications in precision devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans, J. S. O.; Hu, Z.; Jorgensen, J. D.; Argyriou, D. N.; Short, S.; Sleight, A. W. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 1997, 275, 61–65.

    Article  Google Scholar 

  2. Li, W. H.; Wu, S. Y.; Yang, C. C.; Lai, S. K.; Lee, K. C.; Huang, H. L.; Yang, H. D. Thermal contraction of Au nanoparticles. Phys. Rev. Lett. 2002, 89, 135504.

    Article  Google Scholar 

  3. Takenaka, K.; Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 2005, 87, 261902.

    Article  Google Scholar 

  4. Sun, Y.; Wang, C.; Wen, Y. C.; Zhu, K. G.; Zhao, J. T. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN. Appl. Phys. Lett. 2007, 91, 231913.

    Article  Google Scholar 

  5. Zheng, X. G.; Kubozono, H.; Yamada, H.; Kato, K.; Ishiwata, Y.; Xu, C. N. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotechnol. 2008, 3, 724–726.

    Article  Google Scholar 

  6. Grigoriadis, C.; Haase, N.; Butt, H. J.; Müllen, K.; Floudas, G. Negative thermal expansion in discotic liquid crystals of nanographenes. Adv. Mater. 2010, 22, 1403–1406.

    Article  Google Scholar 

  7. Hu, P. H.; Chen, J.; Deng, J. X.; Xing, X. R. Thermal expansion, ferroelectric and magnetic properties in (1-x)PbTiO3-xBi(Ni1/2Ti1/2)O3. J. Am. Chem. Soc. 2010, 132, 1925–1928.

    Article  Google Scholar 

  8. Azuma, M.; Chen, W. T.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N. et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2011, 2, 347.

    Article  Google Scholar 

  9. Li, C. W.; Tang, X. L.; Muñoz, J. A.; Keith, J. B.; Tracy, S. J.; Abernathy, D. L.; Fultz, B. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 2011, 107, 195504.

    Article  Google Scholar 

  10. Lin, J. C.; Wang, B. S.; Lin, S.; Tong, P.; Lu, W. J.; Zhang, L.; Song, W. H.; Sun, Y. P. The study of negative thermal expansion and magnetic evolution in antiperovskite compounds Cu0.8-xSnxMn0.2NMn3 (0≤x≤0.3). J. Appl. Phys. 2012, 111, 043905.

    Article  Google Scholar 

  11. Chen, J.; Fan, L. L.; Ren, Y.; Pan, Z.; Deng, J. X.; Yu, R. B.; Xing, X. R. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. Phys. Rev. Lett. 2013, 110, 115901.

    Article  Google Scholar 

  12. Chen, J.; Wang, F. F.; Huang, Q. Z.; Hu, L.; Song, X. P.; Deng, J. X.; Yu, R. B.; Xing, X. R. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi, La)FeO3 over a giant range. Sci. Rep. 2013, 3, 2458.

    Google Scholar 

  13. Huang, R. J.; Liu, Y. Y.; Fan, W.; Tan, J.; Xiao, F. R.; Qian, L. H.; Li, L. F. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472.

    Article  Google Scholar 

  14. Tong, P.; Louca, D.; King, G.; Llobet, A.; Lin, J. C.; Sun, Y. P. Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1-xSnxNMn3. Appl. Phys. Lett. 2013, 102, 041908.

    Article  Google Scholar 

  15. Takenaka, K.; Ozawa, A.; Shibayama, T.; Kaneko, N.; Oe, T.; Urano, C. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1-xCuxN. Appl. Phys. Lett. 2011, 98, 022103.

    Article  Google Scholar 

  16. Chen, Z.; Huang, R. J.; Chu, X. X.; Wu, Z. X.; Liu, Z. N.; Zhou, Y.; Li, L. F. Negative thermal expansion and nearly zero temperature coefficient of resistivity in anti-perovskite manganese nitride Mn3CuN co-doped with Ag and Sn. Cryogenics 2012, 52, 629–631.

    Article  Google Scholar 

  17. Huang, R. J.; Li, L. F.; Cai, F. S.; Xu, X. D.; Qian, L. H. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl. Phys. Lett. 2008, 93, 081902.

    Article  Google Scholar 

  18. Sun, Y.; Guo, Y. F.; Tsujimoto, Y.; Yang, J. J.; Shen, B.; Yi, W.; Matsushita, Y.; Wang, C.; Wang, X.; Li, J. et al. Carbon-induced ferromagnetism in the antiferromagnetic metallic host material Mn3ZnN. Inorg. Chem. 2013, 52, 800–806.

    Article  Google Scholar 

  19. Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys. Rev. Lett. 2008, 101, 205901.

    Article  Google Scholar 

  20. Takenaka, K.; Asano, K.; Misawa, M.; Takagi, H. Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect. Appl. Phys. Lett. 2008, 92, 011927.

    Article  Google Scholar 

  21. Daengsakul, S.; Thomas, C.; Mongkolkachit, C.; Maensirt, S. Effects of crystallite size on magnetic properties of thermalhydro decomposition prepared La1-xSrxMnO3 nanocrystalline powders. Solid State Sci. 2012, 14, 1306–1314.

    Article  Google Scholar 

  22. Li, X. G.; Zhang, T. Size effects on charge ordering and magnetic properties in La0.25Ca0.75MnO3. Ceram. Int. 2009, 35, 151–155.

    Article  Google Scholar 

  23. Chia, C. H.; Zakaria, S.; Yusoff, M.; Goh, S. C.; Haw, C. Y.; Ahmadi, Sh.; Huang, N. M.; Lim, H. N. Size and crystallinitydependent magnetic properties of CoFe2O4 nanocrystals. Ceram. Int. 2010, 36, 605–609.

    Article  Google Scholar 

  24. Prylypko, S. Y.; Akimov, G. Y.; Revenko, Y. F.; Varyukhin, V. N. Crystallite size and magnetic properties of La0.7Mn1.3O3±Δ. Tech. Phys. 2010, 55, 1056–1057.

    Article  Google Scholar 

  25. Berkowitz, A. E; Schuele, W. J.; Flanders, P. J. Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J. Appl. Phys. 1968, 39, 1261–1263.

    Article  Google Scholar 

  26. Wang, X.; Nie, S. H.; Li, J. J.; Clinite, R.; Wartenbe, M.; Martin, M.; Liang, W. X.; Cao, J. M. Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal. Appl. Phys. Lett. 2008, 92, 121918.

    Article  Google Scholar 

  27. Zhang, Y. Q.; Zhang, Z. D.; Aarts, J. First-order nature of a metamagnetic transition and mechanism of giant magnetoresistance in Mn2Sb0.95Sn0.05. Phys. Rev. B 2004, 70, 132407.

    Article  Google Scholar 

  28. Zhang, B.; Zhang, X. X.; Yu, S. Y.; Chen, J. L.; Cao, Z. X.; Wu, G. H. Giant magnetothermal conductivity in the Ni-Mn-In ferromagnetic shape memory alloys. Appl. Phys. Lett. 2007, 91, 012510.

    Article  Google Scholar 

  29. Gu, R. Y.; Wang, Z. D.; Ting, C. S. Theory of electric-fieldinduced metal-insulator transition in doped manganites. Phys. Rev. B 2003, 67, 153101.

    Article  Google Scholar 

  30. Bhowmik, R. N.; Nagarajan, R.; Ranganathan, R. Magnetic enhancement in antiferromagnetic nanoparticle of CoRh2O4. Phys. Rev. B 2004, 69, 054430.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongjin Huang or Laifeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Huang, R., Wang, W. et al. Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites. Nano Res. 8, 2302–2307 (2015). https://doi.org/10.1007/s12274-015-0740-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0740-z

Keywords

Navigation