Skip to main content
Log in

Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates

Nano Research Aims and scope Submit manuscript

Abstract

The surface topography of noble metal particles is a significant factor in tailoring surface-enhanced Raman scattering (SERS) properties. Here, we present a simple fabrication route to hexagonally arranged arrays of surface-roughened urchinlike Ag hemispheres (Ag-HSs) decorated with Ag nanoparticles (Ag-NPs) for highly active and reproducible SERS substrates. The urchin-like Ag-HS arrays are achieved by sputtering Ag onto the top surface of a highly ordered porous anodic aluminum oxide (AAO) template to form ordered arrays of smooth Ag-HSs and then by electrodepositing Ag-NPs onto the surface of each Ag-HS. Owing to the ordered arrangement of the Ag-HSs and the improved surface roughness, the urchin-like hierarchical Ag-HS arrays can provide sufficient and uniform “hot spots” for reproducible and highly active SERS effects. Using the urchin-like Ag-HS arrays as SERS substrates, 10−7 M dibutyl phthalate (a member of plasticizers family) and 1.5 × 10−5 M PCB-77 (one congener of polychlorinated biphenyl, a notorious class of pollutants) are identified, showing promising potential for these substrates in the rapid recognition of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

    Article  Google Scholar 

  2. Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795.

    Article  Google Scholar 

  3. Nima, Z. A.; Mahmood, M.; Xu, Y.; Mustafa, T.; Watanabe, F.; Nedosekin, D. A.; Juratli, M. A.; Fahmi, T.; Galanzha, E. I. et al. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci. Rep. 2014, 4, 4752.

    Article  Google Scholar 

  4. Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res. 2014, 7, 1177–1187.

    Article  Google Scholar 

  5. You, H. J.; Ji, Y. T.; Wang, L.; Yang, S. C.; Yang, Z. M.; Fang, J. X.; Song, X. P.; Ding, B. J. Interface synthesis of gold mesocrystals with highly roughened surfaces for surfaceenhanced Raman spectroscopy. J. Mater. Chem. 2012, 22, 1998–2006.

    Article  Google Scholar 

  6. Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006–5013.

    Article  Google Scholar 

  7. Pechárroman, C.; Pérez-Juste, J.; Mata-Osoro, G.; Liz-Marzán, L. M.; Mulvaney, P. Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. Phys. Rev. B 2008, 77, 035418.

    Article  Google Scholar 

  8. Rodríguez-Fernández, J.; Funston, A. M.; Perez-Juste, J.; álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Mulvaney, P. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009, 11, 5909–5914.

    Article  Google Scholar 

  9. Bakr, O. M.; Wunsch, B. H.; Stellacci, F. High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem. Mater. 2006, 18, 3297–3301.

    Article  Google Scholar 

  10. Wang, H.; Halas, N. J. Mesoscopic Au “meatball” particles. Adv. Mater. 2008, 20, 820–825.

    Article  Google Scholar 

  11. Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.; Xu, H. X. Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Adv. Mater. 2009, 21, 4614–4618.

    Article  Google Scholar 

  12. Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5’-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

    Article  Google Scholar 

  13. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.

    Article  Google Scholar 

  14. Tang, H. B.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Li, Z. B.; Zhang, Z.; Zhang, Y. Urchin-like Aunanoparticles@ Ag-nanohemisphere arrays as active SERSsubstrates for recognition of PCBs. RSC Adv. 2014, 4, 19654–19657.

    Article  Google Scholar 

  15. Wang, J.; Huang, L. Q.; Yuan, L.; Zhao, L. H.; Feng, X. H.; Zhang, W. W.; Zhai, L. P.; Zhu, J. Silver nanostructure arrays abundant in sub-5nm gaps as highly Raman-enhancing substrates. Appl. Surf. Sci. 2012, 258, 3519–3523.

    Article  Google Scholar 

  16. Jaakkola, J. J. K.; Ieromnimon, A.; Jaakkola, M. S. Interior surface materials and asthma in adults: A population-based incident case-control study. Am. J. Epidemiol. 2006, 164, 742–749.

    Article  Google Scholar 

  17. Yanagisawa, R.; Takano, H.; Inoue, K. I.; Koike, E.; Sadakane, K.; Ichinose, T. Effects of maternal exposure to di-(2-ethylhexyl) phthalate during fetal and/or neonatal periods on atopic dermatitis in male offspring. Environ. Health Persp. 2008, 116, 1136–1141.

    Article  Google Scholar 

  18. Kolarik, B.; Naydenov, K.; Larsson, M.; Bornehag, C. G.; Sundell, J. The association between phthalates in dust and allergic diseases among bulgarian children. Environ. Health Persp. 2008, 116, 98–103.

    Article  Google Scholar 

  19. Zheng, T. Z.; Holford, T. R.; Tessari, J.; Mayne, S. T.; Owens, P. H.; Ward, B.; Carter, D.; Boyle, P.; Dubrow, R.; Archibeque-Engle, S. et al. Breast cancer risk associated with congeners of polychlorinated biphenyls. Am. J. Epidemiol. 2000, 152, 50–58.

    Article  Google Scholar 

  20. Rylander, L.; Strömberg, U.; Dyremark, E.; Östman, C.; Nilsson-Ehle, P.; Hagmar, L. Polychlorinated biphenyls in blood plasma among swedish female fish consumers in relation to low birth weight. Am. J. Epidemiol. 1998, 147, 493–502.

    Article  Google Scholar 

  21. Daniels, J. L.; Longnecker, M. P.; Klebanoff, M. A.; Gray, K. A.; Brock, J. W.; Zhou, H. B.; Chen, Z.; Needham, L. L. Prenatal exposure to low-level polychlorinated biphenyls in relation to mental and motor development at 8 months. Am. J. Epidemiol. 2003, 157, 485–492.

    Article  Google Scholar 

  22. Zhou, Q.; Yang, Y.; Ni, J. E.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.

    Article  Google Scholar 

  23. Li, Y. B.; Zheng, M. J.; Ma, L.; Shen, W. Z. Fabrication of highly ordered nanoporous alumina films by stable highfield anodization. Nanotechnology 2006, 17, 5101.

    Article  Google Scholar 

  24. Choi, J.; Luo, Y.; Wehrspohn, R. B.; Hillebrand, R.; Schilling, J.; Gösele, U. Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 2003, 94, 4757–4762.

    Article  Google Scholar 

  25. Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gösele, U. Self-ordering regimes of porous alumina: The 10 porosity rule. Nano Lett. 2002, 2, 677–680.

    Article  Google Scholar 

  26. Li, Z. B.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Zhang, Z.; Li, X. D. Galvanic-cell-induced growth of Ag nanosheetassembled structures as sensitive and reproducible SERS substrates. Chem.—Eur. J. 2012, 18, 14948–14953.

    Article  Google Scholar 

  27. Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Agnanosheet grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 2014, 6, 4781–4788.

    Article  Google Scholar 

  28. Duan, G. T.; Cai, W. P.; Luo, Y. Y.; Li, Y.; Lei, Y. Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering. Appl. Phys. Lett. 2006, 89, 181918.

    Article  Google Scholar 

  29. Zhang, X.; Zhou, Q.; Wang, W. P.; Shen, L.; Li, Z. C.; Zhang, Z. J. Latticing vertically aligned Ag nanorods to enhance its SERS sensitivity. Mater. Res. Bull. 2012, 47, 921–924.

    Article  Google Scholar 

  30. Zhang, X.; Zhou, Q.; Ni, J.; Li, Z. C.; Zhang, Z. J. Surfaceenhanced Raman scattering from a hexagonal lattice of micro-patterns of vertically aligned Ag nanorods. Physica E 2011, 44, 460–463.

    Article  Google Scholar 

  31. Cai, Q.; Lu, S. K.; Liao, F.; Li, Y. Q.; Ma, S. Z.; Shao, M. W. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 2014, 6, 8117–8123.

    Article  Google Scholar 

  32. Lee, J.; Seo, J.; Kim, D.; Shin, S.; Lee, S.; Mahata, C.; Lee, H. S.; Min, B. W.; Lee, T. Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates. ACS Appl. Mater. Inter. 2014, 6, 9053–9060.

    Article  Google Scholar 

  33. Huang, G. L.; Sun, H. W.; Song, Z. H. Interactions between dibutyl phthalate and aquatic organisms. B. Environ. Contam. Tox. 1999, 63, 759–765.

    Article  Google Scholar 

  34. Mylchreest, E.; Cattley, R. C.; Foster, P. M. D. Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: An antiandrogenic mechanism? Toxicol. Sci. 1998, 43, 47–60.

    Article  Google Scholar 

  35. Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhu, C. H.; Zhang, Z. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. J. Raman Spectrosc. 2013, 44, 240–246.

    Article  Google Scholar 

  36. Hou, C.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Chen, B.; Sun, K. X. Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs. Chem. Commun. 2014, 50, 569–571.

    Article  Google Scholar 

  37. Chen, B.; Meng, G. W.; Huang, Q.; Huang, Z. L.; Xu, Q. L.; Zhu, C. H.; Qian, Y. W.; Ding, Y. Green synthesis of largescale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Appl. Mater. Inter. 2014, 6, 15667–15675.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowen Meng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Meng, G., Li, Z. et al. Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates. Nano Res. 8, 2261–2270 (2015). https://doi.org/10.1007/s12274-015-0737-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0737-7

Keywords

Navigation