Skip to main content
Log in

Materialization of strained CVD-graphene using thermal mismatch

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Theoretical physics foretells that “strain engineering” of graphene could hold the key to finding treasures still hidden in two-dimensional (2D) condensed matter physics and commercializing graphene-based devices. However, to produce strained graphene in large quantities is not an easy task by any means. Here, we demonstrate that thermal annealing of graphene placed on various substrates could be a surprisingly simple method for preparing strained graphene with a large area. We found that enhanced graphene-substrate interfacial adhesion plays a critical role in developing strained graphene. Creative device architectures that consider the thermal mismatch between graphene and the target substrate could enable the resulting strain to be intentionally tailored. We believe that our proposed method could suggest a shortcut to realization of graphene straintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  2. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  3. Maiti, C. K.; Armstrong, G. A. Applications of Silicon Germanium Heterostructure Devices; Institute of Physics Publishing (IOP): London, 2002.

    Google Scholar 

  4. Thompson, S. E.; Armstrong, M.; Auth, C.; Cea, S.; Chau, R.; Glass, G.; Hoffman, T.; Klaus, J.; Ma, Z. Y.; McIntyre, B.; et al. A logic nanotechnology featuring strained-silicon. IEEE Electron Dev. Lett. 2004, 24, 191–193.

    Article  Google Scholar 

  5. Maiti, C. K.; Maiti, T. K. Strain-Engineered MOSFETs; CRC Press: U. S. A., 2012.

    Book  Google Scholar 

  6. Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tight- binding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.

    Article  Google Scholar 

  7. Ribeiro, R. M.; Pereira, V. M.; Peres, N. M. R.; Briddon, P. R.; Castro Neto, A. H. Strained graphene: Tight-binding and density functional calculations. New J. Phys. 2009, 11, 115002.

    Article  Google Scholar 

  8. Pereira, V. M.; Castro Neto, A. H. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 2009, 103, 046801.

    Article  Google Scholar 

  9. Cocco, G.; Cadelano, E.; Colombo, L. Gap opening in graphene by shear strain. Phys. Rev. B 2010, 81, 241412.

    Article  Google Scholar 

  10. Choi, S.-M.; Jhi, S.-H.; Son, Y.-W. Effects of strain on electronic properties of graphene. Phys. Rev. B 2010, 81, 081407.

    Article  Google Scholar 

  11. Li, Y.; Jiang, X. W.; Liu, Z. F.; Liu, Z. R. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Res. 2010, 3, 545–556.

    Article  Google Scholar 

  12. Lee, J.-K.; Yamazaki, S.; Yun, H.; Park, J.; Kennedy, G. P.; Kim, G. Pietzsch, O.; Wiesendanger, R.; Lee, S.; Hong, S.; et al. Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 2013, 13, 3494–3500.

    Article  Google Scholar 

  13. Chen, J; Walther, J. H.; Koumoutsakos, P. Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 2014, 14, 819–825.

    Article  Google Scholar 

  14. Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat.Phys. 2009, 6, 30–33.

    Article  Google Scholar 

  15. Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. C.; Crommie, M. F. Strain- induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544–547.

    Article  Google Scholar 

  16. Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S.; et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.

    Google Scholar 

  17. Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566.

    Article  Google Scholar 

  18. Meng, L.; Su, Y.; Geng, D. C.; Yu, G.; Liu, Y. Q.; Dou, R.-F.; Nie, J.-C.; He, L. Hierarchy of graphene wrinkles induced by thermal strain engineering. Appl. Phys. Lett. 2013, 103, 251610.

    Article  Google Scholar 

  19. Bai, K.-K.; Zhou, Y.; Zheng, H.; Meng, L.; Peng, H. L.; Liu, Z. F.; Nie, J.-C.; He, L. Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer. Phys. Rev. Lett. 2014, 113, 086102.

    Article  Google Scholar 

  20. Tapasztó, L.; Dumitrică, T. Kim, S. J.; Nemes-Incze, P. Hwang, C.; Biró, L. P. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 2012, 8, 739–742.

    Article  Google Scholar 

  21. Shioya, H.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S. Straining graphene using thin film shrinkage methods. Nano Lett. 2014, 14, 1158–1163.

    Article  Google Scholar 

  22. Yoon, D; Son, Y.-W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011, 11, 3227–3231.

    Article  Google Scholar 

  23. Leterrier, Y. Durability of nanosized oxygen-barrier coatings on polymers. Prog. Mater. Sci. 2003, 48, 1–55.

    Article  Google Scholar 

  24. Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.

    Article  Google Scholar 

  25. Kumar, K.; Kim, Y.-S.; Yang, E.-H. The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 2013, 65, 35–45.

    Article  Google Scholar 

  26. Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X.-Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.

    Article  Google Scholar 

  27. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

    Article  Google Scholar 

  28. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  29. Proctor, J. E.; Gregoryanz, E.; Novoselov, K. S.; Lotya, M.; Coleman, J. N.; Halsall, M. P. High-pressure Raman spectroscopy of graphene. Phys. Rev. B 2009, 80, 073408.

    Article  Google Scholar 

  30. Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617–621.

    Article  Google Scholar 

  31. Jie, W. J.; Hui, Y. Y.; Zhang, Y.; Lau, S. P.; Hao, J. H. Effects of controllable biaxial strain on the Raman spectra of monolayer graphene prepared by chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 223112.

    Article  Google Scholar 

  32. Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 2008, 101, 156801.

    Article  Google Scholar 

  33. Mounet, N.; Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 2005, 71, 205214.

    Article  Google Scholar 

  34. Ni, Z. H.; Wang, H. M.; Ma, Y.; Kasim, J.; Wu, Y. H.; Shen, Z. X. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2008, 2, 1033–1039.

    Article  Google Scholar 

  35. Hong, J.; Park, M. K.; Lee, E. J.; Lee, D.; Hwang, D. K.; Ryu, S. Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 2013, 3, 2700.

    Google Scholar 

  36. Jansen, F.; Machonkin, M. A.; Palmieri, N.; Kuhman, D. Thermomechanical properties of amorphous silicon and nonstoichiometric silicon oxide films. J. Appl. Phys. 1987, 62, 4732.

    Article  Google Scholar 

  37. Phung, T. M.; Johnson, D. C.; Antonelli, G. A. A detailed experimental and analytical study of the thermal expansion of dielectric thin films on Si by x-ray reflectivity. J. Appl. Phys. 2006, 100, 064317.

    Article  Google Scholar 

  38. Singh, S. K.; Neek-Amal, M.; Costamagna, S.; Peeters, F. M. Thermomechanical properties of a single hexagonal boron nitride sheet. Phys. Rev. B 2013, 87, 184106.

    Article  Google Scholar 

  39. Miller, D. C.; Foster, R. R.; Jen, S.-H.; Bertrand, J. A.; Cunningham, S. J.; Morris, A. S.; Lee, Y. C.; George, S. M.; Dunn, M. L. Thermo-mechanical properties of alumina films created using the atomic layer deposition technique. Sens. Actuators A-Phys. 2010, 164, 58–67.

    Article  Google Scholar 

  40. Bikiaris, D. N.; Karayannidis, G. P. Thermomechanical analysis of chain-extended PET and PBT. J. Appl. Polym. Sci. 1996, 60, 55–61.

    Article  Google Scholar 

  41. Ni, G.-X.; Yang, H.-Z.; Ji, W.; Baeck, S.-J.; Toh, C.-T.; Ahn, J.-H.; Pereira, V. M.; Özyilmaz, B. Tuning optical conductivity of large-scale CVD graphene by strain engineering. Adv. Mater. 2014, 26, 1081–1086.

    Article  Google Scholar 

  42. Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–393.

    Article  Google Scholar 

  43. Della Volpe, C.; Brugnara, M.; Maniglio, D.; Siboni, S.; Wangdu, T. About the possibility of experimentally measuring an equilibrium contact angle and its theoretical and practical consequences. In Contact Angle, Wettability and Adhesion (Volume 4). Mittal, K. L., Ed.; CRC press: U. S. A., 2006; pp 79–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Mo Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SM., Kim, SM., Na, M.Y. et al. Materialization of strained CVD-graphene using thermal mismatch. Nano Res. 8, 2082–2091 (2015). https://doi.org/10.1007/s12274-015-0719-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0719-9

Keywords

Navigation