Skip to main content
Log in

Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A general method is developed to prepare durable hybrid nanocatalysts by nanostructuring the surface of gold wires via simple alloying and dealloying. The resulting nanoporous gold/Au (NPG/Au) wire catalysts possess nanoporous skins with their thicknesses on robust metal wires specified in a highly controllable manner. As a demonstration, the as-obtained NPG/Au was shown to be a highly active, chemo-selective, and recyclable catalyst for the reduction of nitro compounds and azides using organosilanes as reducing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, T.; Gong, M.; Niu, Z. Q.; Li, S. A.; Yan, X. Y.; Li, Y. D. Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Res. 2010, 3, 174–179.

    Article  Google Scholar 

  2. Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.

    Article  Google Scholar 

  3. Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337–1343.

    Article  Google Scholar 

  4. Metin, O.; Ho, S. F.; Alp, C.; Can, H.; Mankin, M. N.; Gultekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

    Article  Google Scholar 

  5. Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

    Article  Google Scholar 

  6. Cong, H.; Porco, J. A. Chemical synthesis of complex molecules using nanoparticle catalysis. ACS Catal. 2012, 2, 65–70.

    Article  Google Scholar 

  7. Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.

    Article  Google Scholar 

  8. Tuysuz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.

    Article  Google Scholar 

  9. Witham, C. A.; Huang, W.; Tsung, C. K.; Kuhn, J. N.; Somorjai, G. A.; Toste, F. D. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat. Chem. 2010, 2, 36–41.

    Article  Google Scholar 

  10. Cai, S. F.; Duan, H. H.; Rong, H. P.; Wang, D. S.; Li, L. S.; He, W.; Li, Y. D. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal. 2013, 3, 608–612.

    Article  Google Scholar 

  11. Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478–486.

    Article  Google Scholar 

  12. Li, L. S.; Niu, Z. Q.; Cai, S. F.; Zhi, Y.; Li, H.; Rong, H. P.; Liu, L. C.; Liu, L.; He, W.; Li, Y. D. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes. Chem. Commun. 2013, 49, 6843–6845.

    Article  Google Scholar 

  13. Niu, Z. Q.; Peng, Q.; Zhuang, Z. B.; He, W.; Li, Y. D. Evidence of an oxidative-addition-promoted Pd-leaching mechanism in the Suzuki reaction by using a Pd-nanostructure design. Chem. Eur. J. 2012, 18, 9813–9817.

    Article  Google Scholar 

  14. Zhang, Q.; Cai, S. F.; Li, L. S.; Chen, Y. F.; Rong, H. P.; Niu, Z. Q.; Liu, J. J.; He, W.; Li, Y. D. Direct syntheses of styryl ethers from benzyl alcohols via Ag nanoparticle-catalyzed tandem aerobic oxidation. ACS Catal. 2013, 3, 1681–1684.

    Article  Google Scholar 

  15. Xu, C.; Su, J.; Xu, X.; Liu, P.; Zhao, H.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42–43.

    Article  Google Scholar 

  16. Xu, C.; Xu, X.; Su, J.; Ding, Y. Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal. 2007, 252, 243–248.

    Article  Google Scholar 

  17. Yin, H. M.; Zhou, C. Q.; Xu, C. X.; Liu, P. P.; Xu, X. H.; Ding, Y. Aerobic oxidation of d-glucose on support-free nanoporous gold. J. Phys. Chem. C. 2008, 112, 9673–9678.

    Article  Google Scholar 

  18. Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C. 2007, 111, 10382–10388.

    Article  Google Scholar 

  19. Zhang, X. M.; Ding, Y. Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol. 2013, 3, 2862–2868.

    Article  Google Scholar 

  20. Zielasek, V.; Jurgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; Baumer, M. Gold catalysts: Nanoporous gold foams. Angew. Chem. Int. Ed. 2006, 45, 8241–8244.

    Article  Google Scholar 

  21. Wittstock, A.; Neumann, B.; Schaefer, A.; Dumbuya, K.; Kubel, C.; Biener, M. M.; Zielasek, V.; Steinruck, H. P.; Gottfried, J. M.; Biener, J. et al. Nanoporous Au: An unsupported pure gold catalyst? J. Phys. Chem. C. 2009, 113, 5593–5600.

    Article  Google Scholar 

  22. Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Baumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.

    Article  Google Scholar 

  23. Wittstock, A.; Wichmann, A.; Baumert, M. Nanoporous gold as a platform for a building block catalyst. ACS Catal. 2012, 2, 2199–2215.

    Article  Google Scholar 

  24. Kosuda, K. M.; Wittstock, A.; Friend, C. M.; Baumer, M. Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew. Chem. Int. Ed. 2012, 51, 1698–1701.

    Article  Google Scholar 

  25. Yan, M.; Jin, T. A.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L. Y.; Bao, M.; Chen, M. W.; Asao, N.; Yamamoto, Y. Unsupported nanoporous gold catalyst for highly selective hydrogenation of quinolines. Org. Lett. 2013, 15, 1484–1487.

    Article  Google Scholar 

  26. Ishikawa, Y.; Yamamoto, Y.; Asao, N. Selective hydrosilylation of alkynes with a nanoporous gold catalyst. Catal. Sci. Technol. 2013, 3, 2902–2905.

    Article  Google Scholar 

  27. Asao, N.; Ishikawa, Y.; Hatakeyama, N.; Menggenbateer; Yamamoto, Y.; Chen, M. W.; Zhang, W.; Inoue, A. Nanostructured materials as catalysts: Nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew. Chem. Int. Ed. 2010, 49, 10093–10095.

    Article  Google Scholar 

  28. Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L. Y.; Bao, M.; Asao, N.; Chen, M. W.; Yamamoto, Y. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: Remarkable effect of amine additives. J. Am. Chem. Soc. 2012, 134, 17536–17542.

    Article  Google Scholar 

  29. Wienhofer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875–12879.

    Article  Google Scholar 

  30. Sadykov, V. A.; Isupova, L. A.; Zolotarskii, I. A.; Bobrova, L. N.; Noskov, A. S.; Parmon, V. N.; Brushtein, E. A.; Telyatnikova, T. V.; Chernyshev, V. I.; Lunin, V. V. Oxide catalysts for ammonia oxidation in nitric acid production: Properties and perspectives. Appl. Catal. A-Gen. 2000, 204, 59–87.

    Article  Google Scholar 

  31. Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772–7773.

    Article  Google Scholar 

  32. Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 2004, 16, 1897–1900.

    Article  Google Scholar 

  33. Ding, Y.; Chen, M. W. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569–576.

    Article  Google Scholar 

  34. Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

    Article  Google Scholar 

  35. Boronat, M.; Concepcion, P.; Corma, A.; Gonzalez, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230–16237.

    Article  Google Scholar 

  36. He, L.; Wang, L. C.; Sun, H.; Ni, J.; Cao, Y.; He, H. Y.; Ean, K. N. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed. 2009, 48, 9538–9541.

    Article  Google Scholar 

  37. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhofer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  Google Scholar 

  38. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    Article  Google Scholar 

  39. Park, S.; Lee, I. S.; Park, J. A magnetically separable gold catalyst for chemoselective reduction of nitro compounds. Org. Biomol. Chem. 2013, 11, 395–399.

    Article  Google Scholar 

  40. Ahammed, S.; Saha, A.; Ranu, B. C. Hydrogenation of azides over copper nanoparticle surface using ammonium formate in water. J. Org. Chem. 2011, 76, 7235–7239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Ding or Wei He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Yan, X., Zhi, Y. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 8, 1365–1372 (2015). https://doi.org/10.1007/s12274-015-0703-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0703-4

Keywords

Navigation