Skip to main content
Log in

Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reducing Pt loading, while improving electrocatalytic activity and the stability of Pt-based nanostructured materials, is currently a key challenge in green energy technology. Herein, we report the controllable synthesis of tri-metallic (Au@Ag@Pt) and bimetallic (Ag@Pt) particles consisting of a controllable thin Pt shell, via interface-mediated galvanic displacement. Through oil-ethanol-H2O interface mediation, the controllable “out to in” displacement of Ag atoms to Pt enables the formation of a thin Pt shell on monodisperse sub-ten-nanometer Au@Ag and Ag nanocrystals. The synthesized nanoparticles with a thin Pt shell exhibited potential catalytic activity towards the oxygen reduction reaction (ORR) due to the high exposure of Pt atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, B.; Pedro, M. J.; Camargo, H. C.; Cho, C. E.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  2. Chen, C.; Kang, Y. J.; Huo, Z.Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, A. J.; Manovrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  3. Sasaki, K.; Naohara, H.; Choi, Y. M.; Cai, Y.; Chen, W. F.; Liu, P.; Radoslav, R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Commun. 2012, 3, 1115–1118.

    Article  Google Scholar 

  4. Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240–264.

    Article  Google Scholar 

  5. Chung, Y. H.; Chung, D. Y.; Jung, N.; Sung, Y. E. Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction. J. Phys. Chem. Let. 2013, 4, 1304–1309.

    Article  Google Scholar 

  6. Fu, G.; Wu, K.; Lin, J.; Tang, Y.; Chen, Y.; Zhou, Y.; Lu, T. One-pot water-based synthesis of Pt-Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826–9834.

    Article  Google Scholar 

  7. Wu, J. B.; Zhang, J. L. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.

    Article  Google Scholar 

  8. Liang, H. W.; Cao, X.; Zhou, F.; Cui, C H.; Zhang, W. J.; Yu, S. H. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467–1471.

    Article  Google Scholar 

  9. Miyabayashi, K.; Nishihara, H.; Miyake, M. Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 2014, 30, 2936–2942.

    Article  Google Scholar 

  10. Wang, D. L.; Yu, Y. C.; Hovden, R.; Ercius, P.; Mundy J. A.; Chen, H.; Jonah, H. R.; David, A. M.; Francis, J. D.; Héctor, D. A. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano. Lett. 2012, 12, 5230–5238.

    Article  Google Scholar 

  11. Kim, K.; Kim, K. L.; Shin, K. S., Coreduced Pt/Ag alloy nanoparticles: surface-enhanced Raman scattering and electrocatalytic activity. J. Phys. Chem. C 2011, 115, 23374–23380.

    Article  Google Scholar 

  12. Liu, Z. L.; Lin, X. L.; Lee, J. Y.; Zhang, W. D.; Han, M.; Gan, M. L. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells preparation and characterization of platinum-based. Langmuir 2002, 18, 4054–4060.

    Article  Google Scholar 

  13. Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. 2011, 50, 422–426.

    Article  Google Scholar 

  14. Morozan, A.; Jousselme, B.; Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Ener. Environ. Sci. 2011, 4, 1238–1241.

    Article  Google Scholar 

  15. Yang, J. H.; Yang, J.; Ying, J. Y. Morphology and lateral strain control of Pt nanoparticles via core/shell construction using alloy AgPd core toward oxygen reduction reaction, ACS nano 2012, 6, 9373–9382.

    Article  Google Scholar 

  16. Zhang, Y.; Hsieh, Y.; Vyacheslav, V.; Su, D.; Wei, A.; Rui, S.; Zhu, Y. M.; Liu, P.; Jia, X. W.; Radoslav, R. A. High performance Pt monolayer catalysts produced via core-catalyzed coating in ethanol. ACS Catal. 2014, 4, 738–742.

    Article  Google Scholar 

  17. Li, C.; Yamauchi, Y. Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells. Phys Chem Chem Phys 2013, 15, 3490–3496.

    Article  Google Scholar 

  18. Chaudhuri, G. R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

    Article  Google Scholar 

  19. Li, Y.; Qi, W. H.; Huang, B.Y.; Ji, W. H.; Wang, M. P. Size- and composition-dependent structural stability of core-shell and alloy Pd-Pt and Au-Ag nanoparticles. J. Phys. Chem. C 2013, 117, 15394–15401.

    Article  Google Scholar 

  20. Zheng, F.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  21. Yang, H. Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem. Int. Ed. 2011, 50, 2674–2676.

    Article  Google Scholar 

  22. Peng, Z. M.; Wu, J. B.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098–1106.

    Article  Google Scholar 

  23. Kim, S. J.; Ah, C. S.; Jang, D. J. Optical fabrication of hollow platinum nanospheres by excavating the silver core of Ag@Pt nanoparticles. Adv. Mater. 2007, 19, 1064–1068.

    Article  Google Scholar 

  24. Li, T.; You, H. J.; Xu, M. W.; Song, X. P.; Fang, J. X. Electrocatalytic properties of hollow coral-like platinum mesocrystals. ACS Appl. Mater. Inter. 2012, 4, 6942–6948.

    Article  Google Scholar 

  25. Liu, H.; Ye, F.; Yang, J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. Ind. & Eng. Chemistry Research 2014, 53, 5925–5931.

    Article  Google Scholar 

  26. Feng, Y. Y.; Ma, J., Zhang, G. R.; Zhao, D.; Xu, B. Q. An interfacially alloyed Pt/Ag cathode catalyst for the electrochemical reduction of oxygen. Chin. J. Catal. 2009, 30, 776–779.

    Article  Google Scholar 

  27. Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys, Nano Res. 2010, 3, 574–580.

    Article  Google Scholar 

  28. Peng, Z.; Yang, H. Ag-Pt alloy nanoparticles with the compositions in the miscibility gap. J. Solid State Chem. 2008, 181, 1546–1551.

    Article  Google Scholar 

  29. Wang, C.; Markovic, N. M.; Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 891–898.

    Article  Google Scholar 

  30. Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: an effective platform for catalytic activity tuning. Sci. Rep. 2014, 4, 3969–3973.

    Google Scholar 

  31. Liu, H.; Yang, J. Bimetallic Ag-hollow Pt heterodimers via inside-out migration of Ag in core-shell Ag-Pt nanoparticles at elevated temperature. J. Mater. Chem. A 2014, 2, 7075–7079.

    Article  Google Scholar 

  32. Park, S.; Xie, Y.; Weaver, M. J. Electrocatalytic pathways on carbon-supported platinum nanoparticles: Comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 2002, 18, 5791–5798.

    Google Scholar 

  33. Kristiana, N.; Yua, Y.; Gunawana, P.; Xu, R.; Deng, W.; Liu, X.; Wang, X. Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim. Acta 2009, 54, 4916–4924.

    Article  Google Scholar 

  34. Zhang, J. T.; Tang, Y.; Weng, L.; Ouyang, M. Versatile strategy for precisely tailored core@shell nanostructure with single shell layer accuracy: the case of metallic shell, Nano lett. 2009, 9, 4061–4065.

    Article  Google Scholar 

  35. Wang, X.; Peng, Q.; Li, Y. D. Interface-mediated growth of monodispersed nanostructures. Acc. Chem. Res. 2007, 40, 635–643.

    Article  Google Scholar 

  36. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

    Article  Google Scholar 

  37. Zhang, H.; Jin, M.; Wang, J.; Li, W.; CaMargo, P. H. C.; Kim, M. J.; Yang, D.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

    Article  Google Scholar 

  38. Yang, Y.; Liu, J. Y.; Fu, Z.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.

    Article  Google Scholar 

  39. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  Google Scholar 

  40. Wojtysiak, S.; Gullónb, J. S.; D—uzewski, P.; Kudelskia, A. Synthesis of core-shell silver-platinum nanoparticles, improving shell integrity. Colloids and Surfaces A: Physicochem and Eng. Aspects 2014, 441, 178–183.

    Article  Google Scholar 

  41. Neumann, C. C. M.; Laborda, E.; Tschulik, K.; Ward, K. R.; Compton, R. G. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 2013, 6, 511–524.

    Article  Google Scholar 

  42. Lu Y. Z.; Wang Y. C.; Chen, W. Silver nanorods for oxygen reduction: Strong effects of protecting ligand on the electrocatalytic activity. Journal Power Source 2011, 196, 3033–3038.

    Article  Google Scholar 

  43. Liu, H.; Qu, J. L.; Chen, Y. F.; Li, J. Q.; Ye, F.; Lee, J. Y.; Yang, J. Hollow and cage-bell structured nanomaterials of noble metals. J. Am. Chem. Soc. 2012, 134, 11602–11610.

    Article  Google Scholar 

  44. Chen, H. M.; Liu, R. S.; Lo, M.Y.; Chang, S. C.; Tsai, L. D.; Peng, Y. M.; Lee, J. Hollow platinum spheres with nano-channels synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C 2008, 112, 7522–7526.

    Article  Google Scholar 

  45. Zhang, X.; Guo, J.; Guan, P.; Liu, C.; Huang, H.; Xue, F.; Dong, X.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nature Commun. 2013, 4, 1924–1927.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiatao Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deogratias, N., Ji, M., Zhang, Y. et al. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 8, 271–280 (2015). https://doi.org/10.1007/s12274-014-0664-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0664-z

Keywords

Navigation