Skip to main content
Log in

Stability of BN/metal interfaces in gaseous atmosphere

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (h-BN) is often prepared by epitaxial growth on metals, and stability of the formed BN/metal interfaces in gaseous environment is a key issue for physicochemical properties of the BN overlayers. As an illustration here, the structural change of a BN/Ru(0001) interface upon exposure to O2 has been investigated using in situ photoemission electron microscopy (PEEM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). We demonstrate the occurrence of oxygen intercalation of the BN overlayers in O2 atmosphere, which decouples the BN overlayer from the substrate. Comparative studies of oxygen intercalation at BN/Ru(0001) and graphene/Ru(0001) surfaces indicate that the oxygen intercalation of BN overlayers happens more easily than graphene. This finding will be of importance for future applications of BN-based devices and materials under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  2. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451–10453.

    Article  Google Scholar 

  3. Gibb, A. L.; Alem, N.; Chen, J. H.; Erickson, K. J.; Ciston, J.; Gautam, A.; Linck, M.; Zettl, A. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 2013, 135, 6758–6761.

    Article  Google Scholar 

  4. Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

    Article  Google Scholar 

  5. Müller, F.; Hüfner, S.; Sachdev, H. Epitaxial growth of boron nitride on a Rh(111) multilayer system: Formation and fine tuning of a BN-nanomesh. Surf. Sci. 2009, 603, 425–432.

    Article  Google Scholar 

  6. Goriachko, A.; He, Y.; Knapp, M.; Over, H. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 2007, 23, 2928–2931.

    Article  Google Scholar 

  7. Müller, F.; Stöwe, K.; Sachdev, H. Symmetry versus commensurability: Epitaxial growth of hexagonal boron nitride on Pt(111) from B-Trichloroborazine (ClBNH)3. Chem. Mater. 2005, 17, 3464–3467.

    Article  Google Scholar 

  8. Lee, K. H.; Shin, H. J.; Lee, J.; Lee, I.; Kim, G. H.; Choi, J.Y.; Kim, S. Y. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718.

    Article  Google Scholar 

  9. Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H.; Juang, Z. Y.; Dresselhaus, M. S.; Li, L. J.; Kong, J. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

    Article  Google Scholar 

  10. Wang, M.; Kim, M.; Odkhuu, D.; Park, N.; Lee, J.; Jang, W. J.; Kahng, S. J.; Ruoff, R. S.; Song, Y. J.; Lee, S. Catalytic transparency of hexagonal boron nitride on copper for chemical vapor deposition growth of large-area and high-quality graphene. ACS Nano 2014, 6, 5478–5483.

    Article  Google Scholar 

  11. Lyalin, A.; Nakayama, A.; Uosaki, K.; Taketsugu, T. Functionalization of monolayer h-BN by a metal support for the oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 21359–21370.

    Article  Google Scholar 

  12. Uosaki, K.; Elumalai, G.; Noguchi, H.; Masuda, T.; Lyalin, A.; Nakayama, A.; Taketsugu, T. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: Theoretical suggestion and experimental proof. J. Am. Chem. Soc. 2014, 136, 6542–6545.

    Article  Google Scholar 

  13. Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem. Int. Ed. 2010, 49, 6120–6124.

    Article  Google Scholar 

  14. Goriachko, A.; He, Y. B.; Over, H. Complex growth of nano Au on BN nanomeshes supported by Ru (0001). J. Phys. Chem. C 2008, 112, 8147–8152.

    Article  Google Scholar 

  15. Zhang, Y.; Zhang, Y. F.; Ma, D. L.; Ji, Q. Q.; Fang, W.; Shi, J. P.; Gao, T.; Liu, M. X.; Gao, Y. B.; Chen, Y. B.; Xu, L. M.; Liu, Z. F. Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Res. 2013, 6, 887–896.

    Article  Google Scholar 

  16. Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasi freestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

    Article  Google Scholar 

  17. Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

    Article  Google Scholar 

  18. Mao, J.; Huang, L.; Pan, Y.; Gao, M.; He, J.; Zhou, H.; Guo, H.; Tian, Y.; Zou, Q.; Zhang, L.; et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru (0001). Appl. Phys. Lett. 2012, 100, 093101.

    Article  Google Scholar 

  19. Sicot, M.; Leicht, P.; Zusan, A.; Bouvron, S.; Zander, O.; Weser, M.; Dedkov, Y. S.; Horn, K.; Fonin, M. Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111). ACS Nano 2012, 6, 151–158.

    Article  Google Scholar 

  20. Cui, Y.; Gao, J.; Jin, L.; Zhao, J.; Tan, D.; Fu, Q.; Bao, X. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352–360.

    Article  Google Scholar 

  21. Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 2012, 51, 4856–4859.

    Article  Google Scholar 

  22. Ma, D. L.; Zhang, Y. F.; Liu, M. X.; Ji, Q. Q.; Gao, T.; Zhang, Y.; Liu, Z. F. Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Res. 2013, 6, 671–678.

    Article  Google Scholar 

  23. Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296–8301.

    Article  Google Scholar 

  24. Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover-Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179

    Article  Google Scholar 

  25. Feng, X.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662–5668.

    Article  Google Scholar 

  26. Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P.; Liu, L.; Bluhm, H.; Liu, Z.; Zhang, S. B.; Bao, X. H. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 17023–17028

    Article  Google Scholar 

  27. Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655–16660.

    Article  Google Scholar 

  28. Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

    Article  Google Scholar 

  29. Goriachko, A.; He, Y. B.; Knapp, M.; Over, H. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 2007, 23, 2928–2931.

    Article  Google Scholar 

  30. Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano 2011, 9, 7303–7309.

    Article  Google Scholar 

  31. Preobrajenski, A. B.; Nesterov, M. A.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett. 2007, 446, 119–123.

    Article  Google Scholar 

  32. Ling, W. L.; Bartelt, N. C.; Pohl, K.; Figuera, J.; Hwang, R. Q.; McCarty, K. F. Enhanced self-diffusion on Cu(111) by trace amounts of S: Chemical-reaction-limited kinetics. Phys. Rev. Lett. 2004, 93, 166101.

    Article  Google Scholar 

  33. Jin, L.; Fu, Q.; Yang, Y.; Bao, X. A comparative study of intercalation mechanism at graphene/Ru (0001) interface. Surf. Sci. 2013, 617, 81–86.

    Article  Google Scholar 

  34. Lindroos, M.; Pfnür, H.; Held, G.; Menzel, D. Adsorbate induced reconstruction by strong chemisorption: Ru(001) p(2×2)-O. Surf. Sci. 1989, 222, 451.

    Article  Google Scholar 

  35. Murata, Y.; Starodub, E.; Kappes, B. B.; Ciobanu, C. V.; Bartelt, N. C.; McCarty, K. F.; Kodambaka, S. Orientation-dependent work function of graphene on Pd (111). Appl. Phys. Lett. 2010, 97, 143114.

    Article  Google Scholar 

  36. Ünal, B.; Sato, Y.; McCarty, K. F.; Bartelt, N. C.; Duden, T.; Jenks, C. J.; Schmid, A. K.; Thiel, P. A. Work function of a quasicrystal surface: Icosahedral Al-Pd-Mn. J. Vac. Sci. Technol. A 2009, 27, 1249.

    Article  Google Scholar 

  37. Nie, S.; Walter, A. L.; Bartelt, N. C.; Starodub, E.; Bostwick, A.; Rotenberg, E.; McCarty, K. F. Growth from below: Graphene bilayers on Ir (111). ACS Nano 2011, 5, 2298–2306.

    Article  Google Scholar 

  38. Ohta, T.; Gabaly, F. E.; Bostwick, A.; McChesney, J. L.; Emtsev, K.V.; Schmid, A. K.; Seyller, T.; Horn, K.; Rotenberg, E. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 2008, 10, 023034.

    Article  Google Scholar 

  39. Orofeo, C. M.; Suzuki, S.; Kageshima, H.; Hibino, H. Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt. Nano Res. 2013, 5, 335–347.

    Article  Google Scholar 

  40. Orlando, F.; Larciprete, R.; Lacovig, P.; Boscarato, I.; Baraldi, A.; Lizzit, S. Epitaxial growth of hexagonal boron nitride on Ir(111). J. Phys. Chem. C 2012, 116, 157–164.

    Article  Google Scholar 

  41. Lizzit, S.; Baraldi, A.; Groso, A.; Reuter, K.; Ganduglia-Pirovano, M. V.; Stampfl, C.; Scheffler, M.; Stichler, M.; Keller, C.; Wurth, W.; Menzel, D. Surface core-level shifts of clean and oxygen-covered Ru(0001). Phys. Rev. B 2001, 63, 205419.

    Article  Google Scholar 

  42. Starr, D. E.; Bluhm, H. CO adsorption and dissociation on Ru(0001) at elevated pressures. Surf. Sci. 2013, 608, 241–248.

    Article  Google Scholar 

  43. Blume, R.; Hävecker, M.; Zafeiratos, S.; Teschner, D.; Kleimenov, E.; Knop-Gericke, A.; Schlögl, R.; Barinov, A.; Dudin, P.; Kiskinova, M. Catalytically active states of Ru(0001) catalyst in CO oxidation reaction. J. Catal. 2006, 239, 354–361.

    Article  Google Scholar 

  44. Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.

    Article  Google Scholar 

  45. Dong A. Y.; Fu, Q.; Wei, M. M.; Liu, Y.; Ning, Y. X.; Yang, F.; Bluhm, H.; Bao, X. H. Facile oxygen intercalation between full layer graphene and Ru (0001) under ambient conditions. Surf. Sci. 2014, doi: 10.1016/j.susc.2014.10.008.

    Google Scholar 

  46. Liu, L.; Siegel, D. A.; Chen, W.; Liu, P. Z.; Guo, J. J.; Duscher, G.; Zhao, C.; Wang, H.; Wang, W. L.; Bai, X. D.; McCarty, K. F.; Zhang, Z. Y.; Gu, G. Unusual role of epilayer-substrate interactions in determining orientational relations in van der Waals epitaxy. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 16670–16675.

    Article  Google Scholar 

  47. Kidambi, P. R.; Bayer, B. C.; Blume, R.; Wang, Z. J.; Baehtz, C.; Weatherup, R. S.; Willinger, M. G.; Schlögl, R.; Hofmann, S. Observing graphene grow: Catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 2013, 13, 4769–4778.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Fu or Xinhe Bao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fu, Q., Wei, M. et al. Stability of BN/metal interfaces in gaseous atmosphere. Nano Res. 8, 227–237 (2015). https://doi.org/10.1007/s12274-014-0639-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0639-0

Keywords

Navigation