Skip to main content
Log in

Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hybrid structures composed of layered materials have received much attention due to their exceptional tunable optical, electronic and catalytic properties. Here, we describe a hydrothermal strategy for coupling vertical ZnO nanorods on MoS2 monolayers without a catalyst. These vapor-solid-grown MoS2 monolayers aid in growing vertical ZnO nanorods via epitaxy. Enhanced Raman and photoluminescence emissions were observed from the MoS2 monolayers under the ZnO nanorods in these coupled structures, which was attributed to the light antenna effect of the ZnO nanorods. These hybrid and incorporation protocols for layered materials will provide new perspectives and opportunities for promoting the construction of heterojunctions with adjustable layered structures leading to fascinating fundamental phenomena and advanced devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yankowitz, M.; Wang, J. I. J.; Birdwell, A. G.; Chen, Y. A.; Watanabe, K.; Taniguchi, T.; Jacquod, P.; San-Jose, P.; Jarillo-Herrero, P.; LeRoy, B. J. Electric field control of soliton motion and stacking in trilayer graphene. Nat. Mater. 2014, 13, 786–789.

    Article  Google Scholar 

  2. Radisavljevic, B.; Kis, A. Mobility engineering and a metalinsulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    Article  Google Scholar 

  3. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  4. Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.

    Article  Google Scholar 

  5. Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  6. Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

    Article  Google Scholar 

  7. Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

    Article  Google Scholar 

  8. Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.

    Article  Google Scholar 

  9. Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

    Article  Google Scholar 

  10. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  11. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  12. Mohseni, P. K.; Behnam, A.; Wood, J. D.; English, C. D.; Lyding, J. W.; Pop, E.; Li, X. L. InxGa1−x As nanowire growth on graphene: van der Waals epitaxy induced phase segregation. Nano Lett. 2013, 13, 1153–1161.

    Article  Google Scholar 

  13. Kim, Y. J.; Lee, J. H.; Yi, G. C. Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 2009, 95, 213101.

    Article  Google Scholar 

  14. Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.

    Article  Google Scholar 

  15. Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.

    Article  Google Scholar 

  16. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. G.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  17. Mohseni, P. K.; Lawson, G.; Couteau, C.; Weihs, G.; Adronov, A.; LaPierre, R. R. Growth and characterization of GaAs nanowires on carbon nanotube composite films: Toward flexible nanodevices. Nano Lett. 2008, 8, 4075–4080.

    Article  Google Scholar 

  18. Djurišić, A. B.; Leung, Y. H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961.

    Article  Google Scholar 

  19. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  20. Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721.

    Article  Google Scholar 

  21. Wu, S. F.; Huang, C. M.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. D. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768–2772.

    Article  Google Scholar 

  22. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  23. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  24. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    Article  Google Scholar 

  25. Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

    Article  Google Scholar 

  26. Chuang, L. C.; Moewe, M.; Chase, C.; Kobayashi, N. P.; Chang-Hasnain, C.; Crankshaw, S. Critical diameter for III-V nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 2007, 90, 043115.

    Article  Google Scholar 

  27. Ertekin, E.; Greaney, P. A.; Chrzan, D. C.; Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 2005, 97, 114325.

    Google Scholar 

  28. Zervos, M.; Feiner, L. F. Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs (111) nanowires. J. Appl. Phys. 2004, 95, 281–291.

    Article  Google Scholar 

  29. Hosseini Shokouh, S. H.; Pezeshki, A.; Raza, S. R. A.; Choi, K.; Min, S. W.; Jeon, P. J.; Lee, H. S.; Im, S. Molybdenum disulfide nanoflake-zinc oxide nanowire hybrid photoinverter. ACS Nano 2014, 8, 5174–5181.

    Article  Google Scholar 

  30. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  Google Scholar 

  31. Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252–4254.

    Article  Google Scholar 

  32. Shuford, K. L.; Ratner, M. A.; Gray, S. K.; Schatz, G. C. Finite-difference time-domain studies of light transmission through nanohole structures. Appl. Phys. B 2006, 84, 11–18.

    Article  Google Scholar 

  33. Chang, C. C.; Sharma, Y. D.; Kim, Y. S.; Bur, J. A.; Shenoi, R. V.; Krishna, S.; Huang, D. H.; Lin, S. Y. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett. 2010, 10, 1704–1709.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Chen or Guozhen Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhang, Y., Zhang, T. et al. Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. Nano Res. 8, 743–750 (2015). https://doi.org/10.1007/s12274-014-0557-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0557-1

Keywords

Navigation