Skip to main content
Log in

Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the first time, we show the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis. For Bi2WO6 quantum dots (QDs) intercalated in a montmorillonite (MMT) nanostructure as an example, the average lifetime of the photogenerated charge carriers was increased from 3.06 μs to 18.8 μs by constructing the intercalated nanostructure. The increased lifetime markedly improved the photocatalytic performance of Bi2WO6 both in solar water oxidation and environmental purification. This work not only provides a method to produce QD-intercalated ultrathin nanostructures but also a general route to design efficient semiconductor-based photoconversion materials for solar fuel generation and environmental purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 2013, 23, 5444–5450.

    Article  Google Scholar 

  2. Yuan, S.-J.; Chen, J.-J.; Lin, Z.-Q.; Li, W.-W.; Sheng, G.-P.; Yu, H.-Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249.

    Google Scholar 

  3. Xu, C. B.; Yang, W. S.; Guo, Q.; Dai, D. X.; Chen, M. D.; Yang, X. M. Molecular hydrogen formation from photocatalysis of methanol on TiO2 (110). J. Am. Chem. Soc. 2013, 135, 10206–10209.

    Article  Google Scholar 

  4. Ide, Y.; Torii, M.; Sano, T. Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis. J. Am. Chem. Soc. 2013, 135, 11784–11786.

    Article  Google Scholar 

  5. Abe, R.; Shinmei, K.; Koumura, N.; Hara, K.; Ohtani, B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J. Am. Chem. Soc. 2013, 135, 16872–16884.

    Article  Google Scholar 

  6. Yan, S. C.; Wang, J. J.; Gao, H. L.; Wang, N. Y.; Yu, H.; Li, Z. S.; Zhou, Y.; Zou, Z. G. Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels. Adv. Funct. Mater. 2013, 23, 1839–1845.

    Article  Google Scholar 

  7. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H.-M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  Google Scholar 

  8. Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

    Article  Google Scholar 

  9. Duncan, T. V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011, 363, 1–24.

    Article  Google Scholar 

  10. Boukhatem, H.; Djouadi, L.; Abdelaziz, N.; Khalaf, H. Synthesis, characterization and photocatalytic activity of CdS-montmorillonite nanocomposites. Appl. Clay Sci. 2013, 72, 44–48.

    Article  Google Scholar 

  11. Liu, J. J.; Dong, M. Q.; Zuo, S. L.; Yu, Y. C. Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Appl. Clay Sci. 2009, 43, 156–159.

    Article  Google Scholar 

  12. Chen, J. Y.; Li, G. Y.; He, Z. G.; An, T. C. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst. J. Hazard. Mater. 2011, 190, 416–423.

    Article  Google Scholar 

  13. Ooka, C.; Akita, S.; Ohashi, Y.; Horiuchi, T.; Suzuki, K.; Komai, S.; Yoshida, H.; Hattori, T. Crystallization of hydrothermally treated TiO2 pillars in pillared montmorillonite for improvement of the photocatalytic activity. J. Mater. Chem. 1999, 9, 2943–2952.

    Article  Google Scholar 

  14. Zhang, G. K.; Ding, X. M.; He, F. S.; Yu, X. Y.; Zhou, J.; Hu, Y. J.; Xie, J. W. Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir, 2008, 24, 1026–1030.

    Article  Google Scholar 

  15. Nascimento, C. C.; Andrade, G. R. S.; Neves, E. C.; Barbosa, C. D. E. S.; Costa, L. P.; Barreto, L. S.; Gimenez, I. F. Nanocomposites of CdS nanocrystals with montmorillonite functionalized with thiourea derivatives and their use in photocatalysis. J. Phys. Chem. C 2012, 116, 21992–22000.

    Article  Google Scholar 

  16. Fatimah, I.; Wang, S. B.; Wulandari, D. ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Appl. Clay Sci. 2011, 53, 553–560.

    Article  Google Scholar 

  17. Kudo, A.; Hijii, S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett. 1999, 28, 1103–1104.

    Article  Google Scholar 

  18. Sun, S. M.; Wang, W. Z.; Zhang, L.; Gao, E. P.; Jiang, D.; Sun, Y. F.; Xie, Y. Ultrathin {1}-oriented bismuth tungsten oxide nanosheets as highly efficient photocatalysts. ChemSusChem 2013, 6, 1873–1877.

    Article  Google Scholar 

  19. Zhang, L. W.; Bahnemann, D. Synthesis of nanovoid Bi2WO6 2D ordered arrays as photoanodes for photoelectrochemical water splitting. ChemSusChem 2013, 6, 283–290.

    Article  Google Scholar 

  20. Bhattacharya, C.; Lee, H. C.; Bard, A. J. Rapid screening by scanning electrochemical microscopy (SECM) of dopants for Bi2WO6 improved photocatalytic water oxidation with Zn doping. J. Phys. Chem. C 2013, 117, 9633–9640.

    Article  Google Scholar 

  21. Hill, J. C.; Choi, K.-S. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. J. Mater. Chem. A 2013, 1, 5006–5014.

    Article  Google Scholar 

  22. Zhu, S. B.; Xu, T. G.; Fu, H. B.; Zhao, J. C.; Zhu, Y. F. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol. 2007, 41, 6234–6239.

    Article  Google Scholar 

  23. Wu, J.; Duan, F.; Zheng, Y.; Xie, Y. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J. Phys. Chem. C 2007, 111, 12866–12871.

    Article  Google Scholar 

  24. He, D. Q.; Wang, L. L.; Li, H. Y.; Yan, T. Y.; Wang, D. J.; Xie, T. F. Self-assembled 3D hierarchical clew-like Bi2WO6 microspheres: Synthesis, photo-induced charges transfer properties, and photocatalytic activities. CrystEngComm 2011, 13, 4053–4059.

    Article  Google Scholar 

  25. Xu, L.; Yang, X. Y.; Zhai, Z.; Hou, W. H. EDTA-mediated shape-selective synthesis of Bi2WO6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities. CrystEngComm 2011, 13, 7267–7275.

    Article  Google Scholar 

  26. Chen, Z.; Qian, L. W.; Zhu, J.; Yuan, Y. P.; Qian, X. F. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 2010, 12, 2100–2106.

    Article  Google Scholar 

  27. Dai, X.-J.; Luo, Y.-S.; Zhang, W.-D.; Fu, S.-Y. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area. Dalton Trans. 2010, 39, 3426–3432.

    Article  Google Scholar 

  28. Tian, J.; Sang, Y. H.; Yu, G. W.; Jiang, H. D.; Mu, X. N.; Liu, H. A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv. Mater. 2013, 25, 5075–5080.

    Article  Google Scholar 

  29. Sun, S. M.; Wang, W. Z.; Zhang, L. Efficient contaminant removal by Bi2WO6 films with nanoleaflike structures through a photoelectrocatalytic process. J. Phys. Chem. C 2012, 116, 19413–19418.

    Article  Google Scholar 

  30. Zhang, Z. J.; Wang, W. Z.; Xu, J.; Shang, M.; Ren, J.; Sun, S. M. Enhanced photocatalytic activity of Bi2WO6 doped with upconversion luminescence agent. Catal. Commun. 2011, 13, 31–34.

    Article  Google Scholar 

  31. Yu, J. G.; Xiong, J. F.; Cheng, B.; Yu, Y.; Wang, J. B. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chem. 2005, 178, 1968–1972.

    Article  Google Scholar 

  32. Amano, F.; Yamakata, A.; Nogami, K.; Osawa, M.; Ohtani, B. Visible light responsive pristine metal oxide photocatalyst: Enhancement of activity by crystallization under hydrothermal treatment. J. Am. Chem. Soc. 2008, 130, 17650–17651.

    Article  Google Scholar 

  33. Xu, J. H.; Wang, W. Z.; Shang, M.; Sun, S. M.; Ren, J.; Zhang, L. Efficient visible light induced degradation of organic contaminants by Bi2WO6 film on SiO2 modified reticular substrate. Appl. Catal. B: Environ. 2010, 93, 227–232.

    Article  Google Scholar 

  34. Chen, Y. L.; Cao, X. X.; Kuang, J. D.; Chen, Z.; Chen, J. L.; Lin, B. Z. The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres. Catal. Commun. 2010, 12, 247–250.

    Article  Google Scholar 

  35. Shang, M.; Wang, W. Z.; Ren, J.; Sun, S. M.; Wang, L.; Zhang, L. A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. J. Mater. Chem. 2009, 19, 6213–6218.

    Article  Google Scholar 

  36. Sun, S. M.; Wang, W. Z.; Zhang, L. Facile preparation of three-dimensionally ordered macroporous Bi2WO6 with high photocatalytic activity. J. Mater. Chem. 2012, 22, 19244–19249.

    Article  Google Scholar 

  37. Chen, P.; Zhu, L. Y.; Fang, S. H.; Wang, C. Y.; Shan, G. Q. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light. Environ. Sci. Technol. 2012, 46, 2345–2351.

    Article  Google Scholar 

  38. Tombácz, E.; Balázs, J.; Lakatos, J.; Szántó, E. Influence of the exchangeable cations on stability and rheological properties of montmorillonite suspensions. Colloid Polym Sci. 1989, 267, 1016–1025.

    Article  Google Scholar 

  39. Alther, G. R. The effect of the exchangeable cations on the physico-chemical properties of Wyoming bentonites. Appl. Clay Sci. 1986, 1, 273–284.

    Article  Google Scholar 

  40. Yildiz, N.; Sarikaya, Y.; Çalimli, A. The effect of the electrolyte concentration and pH on the rheological properties of the original and the Na2CO3-activated Kütahya bentonite. Appl. Clay Sci. 1999, 14, 319–327.

    Article  Google Scholar 

  41. Sun, S. M.; Wang, W. Z.; Zhang, L. Bi2WO6 quantum dots decorated reduced graphene oxide: Improved charge separation and enhanced photoconversion efficiency. J. Phys. Chem. C 2013, 117, 9113–9120.

    Article  Google Scholar 

  42. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.

    Article  Google Scholar 

  43. Bishop, J.; Banin, A.; Mancinelli, R. L.; Klovstad, M. R. Detection of soluble and fixed NH4 + in clay minerals by DTA and IR reflectance spectroscopy: A potential tool for planetary surface exploration. Planet. Space Sci. 2002, 50, 11–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Wang, W., Jiang, D. et al. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 7, 1497–1506 (2014). https://doi.org/10.1007/s12274-014-0511-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0511-2

Keywords

Navigation