Skip to main content
Log in

SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

SnO2@Co3O4 hollow nano-spheres have been prepared using the template-based sol-gel coating technique and their electrochemical performance as an anode for lithium-ion battery (LIB) was investigated. The size of synthesized hollow spheres was about 50 nm with the shell thickness of 7–8 nm. The fabricated SnO2@Co3O4 hollow nano-sphere electrode exhibited an extraordinary reversible capacity (962 mAh·g−1 after 100 cycles at 100 mA·g−1), good cyclability, and high rate capability, which was attributed to the Co-enhanced reversibility of the Li2O reduction reaction during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.

    Article  Google Scholar 

  2. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

    Article  Google Scholar 

  3. Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.

    Article  Google Scholar 

  4. Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.

    Article  Google Scholar 

  5. Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H.-J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895–6899.

    Article  Google Scholar 

  6. Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045–2052.

    Article  Google Scholar 

  7. Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.

    Article  Google Scholar 

  8. Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 2005, 17, 3297–3301.

    Article  Google Scholar 

  9. Ye, J.; Zhang, H.; Yang, R.; Li, X.; Qi, L. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296–306.

    Article  Google Scholar 

  10. Kim, W.-S.; Lee, B.-S.; Kim, D.-H.; Kim, H.-C.; Yu, W.-R.; Hong, S.-H. SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 2010, 21, 245605.

    Article  Google Scholar 

  11. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  12. Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

    Article  Google Scholar 

  13. Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.

    Article  Google Scholar 

  14. Yang, S.; Yue, W.; Zhu, J.; Ren, Y.; Yang, X. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion natteries. Adv. Funct. Mater. 2013, 23, 3570–3576.

    Article  Google Scholar 

  15. Han, S.; Jang, B.; Kim, T.; Oh, S. M.; Hyeon, T. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 2005, 15, 1845–1850.

    Article  Google Scholar 

  16. Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer. L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

    Article  Google Scholar 

  17. Kim, W.-S.; Hwa, Y.; Jeun, J.-H.; Sohn, H.-J.; Hong, S.-H. Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application. J. Power Sources 2013, 225, 108–112.

    Article  Google Scholar 

  18. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  19. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

    Article  Google Scholar 

  20. Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J.-M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.

    Article  Google Scholar 

  21. Kang, Y.-M.; Song, M.-S.; Kim, J.-H.; Kim, H.-S.; Park, M.-S.; Lee, J.-Y.; Liu, H. K.; Dou, S. X. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta 2005, 50, 3667–3673.

    Google Scholar 

  22. Qi, Y.; Du, N.; Zhang, H.; Fan, X.; Yang, Y.; Yang, D. CoO/NiSix core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 2012, 4, 991–996.

    Google Scholar 

  23. Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  Google Scholar 

  24. Qi, Y.; Du, N.; Zhang, H.; Wang, J.; Yang, Y.; Yang, D. Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities. J. Alloys Compd. 2012, 521, 83–89.

    Article  Google Scholar 

  25. Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432.

    Article  Google Scholar 

  26. Chen, J. S.; Li, C. M.; Zhou, W. W.; Yan, Q. Y.; Archer, L. A.; Lou, X. W. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale 2009, 1, 280–285.

    Article  Google Scholar 

  27. Wang, G.; Gao, X. P.; Shen, P. W. Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. J. Power Sources 2009, 192, 719–723.

    Article  Google Scholar 

  28. Xing, L.-L.; Zhao, Y.-Y.; Zhao, J.; Nie, Y.-X.; Deng, P.; Wang, Q.; Xue, X.-Y. Facile synthesis and lithium storage performance of SnO2-Co3O4 core-shell nanoneedle arrays on copper foil. J. Alloys Compd. 2014, 586, 28–33.

    Article  Google Scholar 

  29. Qi, Y.; Zhang, H.; Du, N.; Zhai, C.; Yang, D. Synthesis of Co3O4@SnO2@C core-shell nanorods with superior reversible lithium-ion storage. RSC Adv. 2012, 2, 9511–9516.

    Article  Google Scholar 

  30. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  31. Lou, X. W.; Yuan, C.; Archer, L. A. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization. Small 2007, 3, 261–265.

    Article  Google Scholar 

  32. Plank, N. O. V.; Snaith, H. J.; Ducati, C.; Bendall, J. S.; Schmidt-Mende, L.; Welland, M. E. A simple low temperature synthesis route for ZnO-MgO core-shell nanowires. Nanotechnology 2008, 19, 465603.

    Article  Google Scholar 

  33. Qi, G.; Liu, Y.; Jiao, W.; Zhang, L. Template synthesis of β-Ni(OH)2 hollow microspheres through a hydrothermal process. Micro Nano Lett. 2010, 5, 278–281.

    Article  Google Scholar 

  34. Qiu, Y.; Yu, J. Synthesis of titanium dioxide nanotubes from electrospun fiber templates. Solid State Commun. 2008, 148, 556–558.

    Article  Google Scholar 

  35. Yim, S. D.; Kim, S. J.; Baik, J. H.; Nam, I.-S.; Mok, Y. S.; Lee, J.-H.; Cho, B. K.; Oh, S. H. Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 2004, 43, 4856–4863.

    Article  Google Scholar 

  36. Ye, Q.-L.; Yoshikawa, H.; Awaga, K. Magnetic and optical properties of submicron-size hollow spheres. Materials 2010, 3, 1244–1268.

    Article  Google Scholar 

  37. Liu, Z.; Ma, R.; Osada, M.; Takada, K.; Sasaki, T. Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 2005, 127, 13869–13874.

    Article  Google Scholar 

  38. Carson, G. A.; Nassir, M. H.; Langell, M. A. Epitaxial growth of Co3O4 on CoO(100). J. Vac. Sci. Technol. A 1996, 14, 1637–1642.

    Article  Google Scholar 

  39. Burriel, M.; Garcia, G.; Santiso, J.; Abrutis, A.; Saltyte, Z.; Figueras, A. Growth kinetics, composition, and morphology of Co3O4 thin films prepared by pulsed liquid-injection MOCVD. Chem. Vapor Depos. 2005, 11, 106–111.

    Article  Google Scholar 

  40. Kim, D. H.; Kwon, J.-H.; Kim, M.; Hong, S.-H. Structural characteristics of epitaxial SnO2 films deposited on a- and m-cut sapphire by ALD. J. Crystal Growth 2011, 322, 33–37.

    Article  Google Scholar 

  41. Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2011, 56, 4532–4539.

    Article  Google Scholar 

  42. Lou, X. W.; Chen, J. S.; Chen, P.; L. Archer, A. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 2009, 21, 2868–2874.

    Article  Google Scholar 

  43. Hwa, Y.; Kim, W.-S.; Yu, B.-C.; Kim, H.; Hong, S.-H.; Sohn, H.-J. Reversible storage of Li-ion in nano-Si/SnO2 core-shell nanostructured electrode. J. Mater. Chem. A 2013, 1, 3733–3738.

    Article  Google Scholar 

  44. Kilibarda, G.; Szabó, D. V.; Schlabach, S.; Winkler, V.; Bruns, M.; Hanemann, T. Investigation of the degradation of SnO2 electrodes for use in Li-ion cells. J. Power Sources 2013, 233, 139–147.

    Article  Google Scholar 

  45. Larcher, D.; Sudant, G.; Leriche, J.-B.; Chabre, Y.; Tarascon, J.-M. The electrochemical reduction of Co3O4 in a lithium cell. J. Electrochem. Soc. 2002, 149, A234–A241.

    Article  Google Scholar 

  46. Aravindan, V.; Jinesh, K. B.; Prabhakar, R. R.; Kale, V. S.; Madhavi, S., Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy 2013, 2, 720–725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Hyeon Hong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, WS., Hwa, Y., Kim, HC. et al. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 7, 1128–1136 (2014). https://doi.org/10.1007/s12274-014-0475-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0475-2

Keywords

Navigation