Skip to main content
Log in

Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid electrolyte based-resistive memories have been considered to be a potential candidate for future information technology with applications in non-volatile memory, logic circuits and neuromorphic computing. A conductive filament model has been generally accepted to be the underlying mechanism for the resistive switching. However, the growth dynamics of such conductive filaments is still not fully understood. Here, we explore the controllability of filament growth by correlating observations of the filament growth with the electric field distribution and several other factors. The filament growth behavior has been recorded using in situ transmission electron microscopy. By studying the real-time recorded filament growth behavior and morphologies, we have been able to simulate the electric field distribution in accordance with our observations. Other factors have also been shown to affect the filament growth, such as Joule heating and electrolyte infrastructure. This work provides insight into the controllable growth of conductive filaments and will help guide research into further functionalities of nanoionic resistive memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663.

    Article  Google Scholar 

  2. Chen, A. Ionic memory technology. In Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Kharton, V. V. Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 1–30.

    Chapter  Google Scholar 

  3. Lu, W.; Jeong, D.; Kozicki, M.; Waser, R. Electrochemical metallization cells-blending nanoionics into nanoelectronics? MRS Bull. 2012, 37, 124–130.

    Article  Google Scholar 

  4. Yang, J. J. S.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

    Article  Google Scholar 

  5. Fujisaki, Y. Review of emerging new solid-state non-volatile memories. Jpn. J. Appl. Phys. 2013, 52, 040001.

    Article  Google Scholar 

  6. Strukov, D. B.; Kohlstedt, H. Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bull. 2012, 37, 108–114.

    Article  Google Scholar 

  7. Yu, S.; Lee, B.; Wong, H. S. P. Metal oxide resistive switching memory. In Functional Metal Oxide Nanostructures. Wu, J.; Cao, J.; Han, W.; Janotti, A.; Kim, H., Eds.; Springer: New York, 2012; pp. 303–335.

    Chapter  Google Scholar 

  8. Tanachutiwat, S.; Liu, M.; Wang, W. FPGA based on integration of CMOS and RRAM. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2011, 19, 2023–2032.

    Article  Google Scholar 

  9. Liauw, Y.; Zhang, Z.; Kim, W.; Gamal, A. E.; Wong, S. S. Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE International, San Francisco, CA, USA, 2012, pp. 406–408.

    Google Scholar 

  10. Chang, T.; Yang, Y.; Lu, W. Building neuromorphic circuits with memristive devices. IEEE Circuits Syst. Mag. 2013, 13, 56–73.

    Article  Google Scholar 

  11. Seok Jeong, D.; Kim, I.; Ziegler, M.; Kohlstedt, H. Towards artificial neurons and synapses: A materials point of view. RSC Adv. 2013, 3, 3169–3183.

    Article  Google Scholar 

  12. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

    Article  Google Scholar 

  13. Sakamoto, T.; Lister, K.; Banno, N.; Hasegawa, T.; Terabe, K.; Aono, M. Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 2007, 91, 092110.

    Article  Google Scholar 

  14. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

    Article  Google Scholar 

  15. Sakamoto, T.; Tada, M.; Okamoto, K.; Hada, H. Electronic conduction mechanism in atom switch using polymer solid electrolyte. IEEE T. Electron Dev. 2012, 59, 3574–3577.

    Article  Google Scholar 

  16. Pan, F.; Yin, S.; Subramanian, V. A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Dev. Lett. 2011, 32, 949–951.

    Article  Google Scholar 

  17. Yu, S. M.; Wong, H. S. P. Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE T. Electron Dev. 2011, 58, 1352–1360.

    Article  Google Scholar 

  18. Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 2012, 3, 732.

    Article  Google Scholar 

  19. Xu, Z.; Bando, Y.; Wang, W.; Bai, X.; Golberg, D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 2010, 4, 2515–2522.

    Article  Google Scholar 

  20. Joshi, U. S. Ion irradiation: A tool to understand oxide RRAM mechanism. Radiat. Eff. Defects S. 2011, 166, 724–733.

    Article  Google Scholar 

  21. Liu, Q.; Long, S.; Lv, H.; Wang, W.; Niu, J.; Huo, Z.; Chen, J.; Liu, M. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 2010, 4, 6162–6168.

    Article  Google Scholar 

  22. Sun, Q.; Gu, J.; Chen, L.; Peng, Z.; Wang P.; Ding, S.; Zhang, D. W. Controllable filament with electric field engineering for resistive switching uniformity. IEEE Electron Dev. Lett. 2011, 32, 1167–1169.

    Article  Google Scholar 

  23. Bradley, J.; Chen, H.; Crawford, J.; Eckert, J.; Ernazarova, K.; Kurzeja, T.; Lin, M.; McGee, M.; Nadler, W.; Stephens, S. G. Creating electrical contacts between metal particles using directed electrochemical growth. Nature 1997, 389, 268–271.

    Article  Google Scholar 

  24. Hsu, K.; Ferreira, P.; Fang, N. Controlled directional growth of silver microwires on a solid electrolyte surface. Appl. Phys. Lett. 2010, 96, 024101.

    Article  Google Scholar 

  25. Balberg, I.; Azulay, D.; Toker, D.; Millo, O. Percolation and tunneling in composite materials. Int. J. Mod. Phys. B 2004, 18, 2091–2121.

    Article  Google Scholar 

  26. Chen, L.; Li, Q.; Guo, H.; Gao, L.; Xia, Y.; Yin, J.; Liu, Z. Monte Carlo simulation of the percolation in Ag30Ge17Se53 amorphous electrolyte films. Appl. Phys. Lett. 2009, 95, 242106.

    Article  Google Scholar 

  27. Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 2013, 4, 1771.

    Article  Google Scholar 

  28. Bang, S.; Chung, T.; Kim, Y. Plasma enhanced chemical vapor deposition of silicon oxide films using TMOS/O2 gas and plasma diagnostics. Thin Solid Films 2003, 444, 125–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Xu or Xuedong Bai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Wang, L., Wei, J. et al. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 7, 1065–1072 (2014). https://doi.org/10.1007/s12274-014-0469-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0469-0

Keywords

Navigation