Skip to main content
Log in

Construction of two-dimensional hydrogen clusters on Au(111) directed by phthalocyanine molecules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Low-dimensional H2 aggregates have been successfully fabricated on Au(111) surfaces and investigated by means of low temperature scanning tunneling microscopy. We use manganese phthalocyanine (MnPc) molecules anchored on the Au(111) surface to efficiently collect and pin hydrogen molecules. A two-dimensional (2D) molecular hydrogen cluster is formed around the MnPc. The hydrogen cluster exhibits bias-dependent topography and spatial-dependent conductance spectra, which are rationalized by the exponentially decreasing threshold energy with distance from the central MnPc to activate the motion of the H2 molecules. This exponential drop reveals an interfacial phase behavior in the 2D cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chopra, I. S.; Chaudhuri, S.; Veyan, J. F.; Chabal, Y. J. Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. Nat. Mater. 2011, 10, 884–889.

    Article  Google Scholar 

  2. Mao, H.-K.; Hemley, R. J. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 1994, 66, 671–692.

    Article  Google Scholar 

  3. Halperin, W. P. Quantum size effects in metal particles. Rev. Mod. Phys. 1986, 58, 533–606.

    Article  Google Scholar 

  4. Qin, S. Y.; Kim, J.; Niu, Q.; Shih, C.-K. Superconductivity at the two-dimensional limit. Science 2009, 324, 1314–1317.

    Article  Google Scholar 

  5. Brun, C.; Hong, I. P.; Patthey, F.; Sklyadneva, I. Y.; Heid, R.; Echenique, P. M.; Bohnen, K. P.; Chulkov, E. V.; Schneider, W.-D. Reduction of the superconducting gap of ultrathin Pb islands grown on Si(111). Phys. Rev. Lett. 2009, 102, 207002.

    Article  Google Scholar 

  6. Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 1993, 262, 218–220.

    Article  Google Scholar 

  7. Loth, S.; Baumann, S.; Lutz, C. P.; Eigler, D. M.; Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 2012, 335, 196–199.

    Article  Google Scholar 

  8. Gupta, J. A.; Lutz, C. P.; Heinrich, A. J.; Eigler, D. M. Strongly coverage-dependent excitations of adsorbed molecular hydrogen. Phys. Rev. B 2005, 71, 115416.

    Article  Google Scholar 

  9. Lotze, C.; Corso, M.; Franke, K. J.; von Oppen, F.; Pascual, J. I. Driving a macroscopic oscillator with the stochastic motion of a hydrogen molecule. Science 2012, 338, 779–782.

    Article  Google Scholar 

  10. Lu, X.; Hipps, K. W. Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases. J. Phys. Chem. B 1997, 101, 5391–5396.

    Article  Google Scholar 

  11. Liu, L. W.; Yang, K.; Jiang, Y. H.; Song, B. Q.; Xiao, W. D.; Li, L. F.; Zhou, H. T.; Wang, Y. L.; Du, S. X.; Ouyang, M.; et al. Reversible single spin control of individual magnetic molecule by hydrogen atom adsorption. Sci. Rep. 2013, 3, 1210.

    Google Scholar 

  12. Liu, L. W.; Yang, K.; Xiao, W. D.; Jiang, Y. H.; Song, B. Q.; Du, S. X.; Gao, H. J. Selective adsorption of metal-phthalocyanine on Au(111) surface with hydrogen atoms. Appl. Phys. Lett. 2013, 103, 023110–5.

    Article  Google Scholar 

  13. Barth, J. V.; Brune, H.; Ertl, G.; Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 1990, 42, 9307–9318.

    Article  Google Scholar 

  14. Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 2001, 413, 619–621.

    Article  Google Scholar 

  15. Xiao, W.; Ruffieux, P.; Aït-Mansour, K.; Gröning, O.; Palotas, K.; Hofer, W. A.; Gröning, P.; Fasel, R. Formation of a regular fullerene nanochain lattice. J. Phys. Chem. B 2006, 110, 21394–21398.

    Article  Google Scholar 

  16. Jiang, Y. H.; Xiao, W. D.; Liu, L. W.; Zhang, L. Z.; Lian, J. C.; Yang, K.; Du, S. X.; Gao, H.-J. Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C 2011, 115, 21750–21754.

    Article  Google Scholar 

  17. Stobiński, L.; Duś, R. Molecular hydrogen chemisorption on thin unsintered gold films deposited at low temperature. Surf. Sci. 1993, 298, 101–106.

    Article  Google Scholar 

  18. Temirov, R.; Soubatch, S.; Neucheva, O.; Lassise, A. C.; Tautz, F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 2008, 10, 053012.

    Article  Google Scholar 

  19. Ralph, D. C.; Buhrman, R. A. Observations of Kondo scattering without magnetic impurities: A point contact study of two-level tunneling systems in metals. Phys. Rev. Lett. 1992, 69, 2118–2121.

    Article  Google Scholar 

  20. Halbritter, A.; Borda, L.; Zawadowski, A. Slow two-level systems in point contacts. Adv. Phys. 2004, 53, 939–1010.

    Article  Google Scholar 

  21. Thijssen, W. H. A.; Djukic, D.; Otte, A. F.; Bremmer, R. H.; van Ruitenbeek, J. M. Vibrationally induced two-level systems in single-molecule junctions. Phys. Rev. Lett. 2006, 97, 226806.

    Article  Google Scholar 

  22. Gaudioso, J.; Lauhon, L. J.; Ho, W. Vibrationally mediated negative differential resistance in a single molecule. Phys. Rev. Lett. 2000, 85, 1918–1921.

    Article  Google Scholar 

  23. Stipe, B. C.; Rezaei, M. A.; Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 1998, 280, 1732–1735.

    Article  Google Scholar 

  24. Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.; van Ruitenbeek, J. M. Measurement of the conductance of a hydrogen molecule. Nature 2002, 419, 906–909.

    Article  Google Scholar 

  25. Kozub, V. I.; Rudin, A. M.; Schober, H. R. Adiabatic electron renormalization of dynamical defects and point contact resistance anomalies. Solid State Commun. 1995, 95, 415–419.

    Article  Google Scholar 

  26. von Delft, J.; Ralph, D. C.; Buhrman, R. A.; Upadhyay, S. K.; Louie, R. N.; Ludwig, A. W. W.; Ambegaokar, V. The 2-channel Kondo model: I. Review of experimental evidence for its realization in metal nanoconstrictions. Ann. Phys-New York 1998, 263, 1–55.

    Article  Google Scholar 

  27. Cox, D. L.; Zawadowski, A. Exotic Kondo effects in metals: Magnetic ions in a crystalline electric field and tunnelling centres. Adv. Phys. 1998, 47, 599–942.

    Article  Google Scholar 

  28. Luo, J.; Cheng, H.; Asl, K. M.; Kiely, C. J.; Harmer, M. P. The role of a bilayer interfacial phase on liquid metal embrittlement. Science 2011, 333, 1730–1733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Jun Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Xiao, W., Liu, L. et al. Construction of two-dimensional hydrogen clusters on Au(111) directed by phthalocyanine molecules. Nano Res. 7, 79–84 (2014). https://doi.org/10.1007/s12274-013-0373-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0373-z

Keywords

Navigation