Skip to main content
Log in

Functionalization of high-moment magnetic nanodisks for cell manipulation and separation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Synthetic antiferromagnetic (SAF) nanoparticles are layer-structured particles with high single-particle magnetic moments. In order to covalently bind these nanoparticles to cells, they were coated with a silica shell followed by conjugation with streptavidin. The silica coating generates both SAF@SiO2 core-shell nanoparticles and silica core-free nanoparticles. Using a simple magnetic separation, silica nanoparticles were removed and SAF@SiO2 nanoparticles were purified. After streptavidin conjugation, these particles were used to stain lung cancer cells, making them highly magnetically responsive. The stained cells can rotate in response to an external magnetic field and can be captured when a blood sample containing these cells flows through the sifter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391.

    Article  CAS  Google Scholar 

  2. Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

    Article  CAS  Google Scholar 

  3. Osterfeld, S. J.; Yu, H.; Gaster, R. S.; Caramuta, S.; Xu, L.; Han, S.; Hall, D. A.; Wilson, R. J.; Sun, S.; White, R. L. et al. Multiplex protein assays based on real-time magnetic nanotag sensing. P. Natl. Acad. Sci. USA 2008, 105, 20637–20640.

    Article  CAS  Google Scholar 

  4. Gaster, R. S.; Hall, D. A.; Nielsen, C. H.; Osterfeld, S. J.; Yu, H.; Mach, K. E.; Wilson, R. J.; Murmman, B.; Liao, J. C.; Gambhir, S. S. et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 2009, 15, 1327–1332.

    Article  CAS  Google Scholar 

  5. Gaster, R. S.; Xu, L.; Han, S. J.; Wilson, R. J.; Hall, D. A.; Osterfeld, S. J.; Yu, H.; Wang, S. X. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 2011, 6, 314–320.

    Article  CAS  Google Scholar 

  6. Brzeska, M.; Justus, M.; Schotter, J.; Bruckl, H.; Rott, K.; Reiss, G. Development of magnetoresistive sensors for the detection of single molecules by magnetic markers. Molecular Phys. Rep. 2004, 39, 32–38.

    CAS  Google Scholar 

  7. Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 2010, 5, 602–606.

    Article  CAS  Google Scholar 

  8. Kim, D. H.; Rozhkova, E. A.; Ulasov, I. V.; Bader, S. D.; Rajh, T.; Lesniak, M. S.; Novosad, V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010, 9, 165–171.

    Article  CAS  Google Scholar 

  9. Sniadecki, N. J.; Anguelouch, A.; Yang, M. T.; Lamb, C. M.; Liu, Z.; Kirschner, S. B.; Liu, Y.; Reich, D. H.; Chen, C. S. Magnetic microposts as an approach to apply forces to living cells. P. Natl. Acad. Sci. USA 2007, 104, 14553–14558.

    Article  CAS  Google Scholar 

  10. Earhart, C. M.; Wilson, R. J.; White, R. L.; Pourmand, N.; Wang, S. X. Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation. J. Magn. Magn. Mater. 2009, 321, 1436–1439.

    Article  CAS  Google Scholar 

  11. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

    Article  CAS  Google Scholar 

  12. Hu, W.; Wilson, R. J.; Koh, A.; Fu, A.; Faranesh, A. Z.; Earhart, C. M.; Osterfeld, S. J.; Han, S.; Xu, L.; Guccione, S. et al. High-moment antiferromagnetic nanoparticles with tunable magnetic properties. Adv. Mater. 2008, 20, 1479–1483.

    Article  CAS  Google Scholar 

  13. Hu, W.; Zhang, M. L.; Wilson, R. J.; Koh, A. L.; Wi, J. S.; Tang, M.; Sinclair, R.; Wang, S. X. Fabrication of planar, layered nanoparticles using tri-layer resist templates. Nanotechnology 2011, 22, 185302.

    Article  Google Scholar 

  14. Wi, J. S.; Barnard, E. S.; Wilson, R. J.; Zhang, M. L.; Tang, M.; Brongersma, M. L.; Wang. S. X. Sombrero-shaped plasmonic nanoparticles with molecular-level sensitivity and multifunctionality. ACS Nano 2011, 5, 6449–6457.

    Article  CAS  Google Scholar 

  15. Fu, A.; Hu, W.; Xu, L.; Wilson, R. J.; Yu, H.; Osterfeld, S. J.; Gambhir, S. S.; Wang, S. X. Protein-functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation. Angew. Chem. Int. Ed. 2009, 48, 1620–1624.

    Article  CAS  Google Scholar 

  16. Zhang, M. L.; Hu, W.; Earhart, C. M.; Tang, M.; Wilson, R. J.; Wang, S. X. Silane-based functionalization of synthetic antiferromagnetic nanoparticles for biomedical applications. J. Appl. Phys. 2010, 107, 09B325.

    Article  Google Scholar 

  17. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  18. Kobayashi, Y.; Kakinuma, H.; Nagao, D.; Ando, Y.; Miyazaki, T.; Konno, M. Silica coating of Co-Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone). J. Nanopart. Res. 2009, 11, 1787–1794.

    Article  CAS  Google Scholar 

  19. Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzán, L. M. Silica coating of silver nanoparticles using a modified Stöber method. J. Colloid Interf. Sci. 2005, 283, 392–396.

    Article  CAS  Google Scholar 

  20. Mine, E.; Yamada, A.; Kobayashi, Y.; Konno, M.; Liz-Marzán, L. M. Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J. Colloid Interf. Sci. 2003, 264, 385–390.

    Article  CAS  Google Scholar 

  21. Wilson, R. J.; Hu, W.; Fu, C. W. P.; Koh, A. L.; Gaster, R. S.; Earhart, C. M.; Fu, A. H.; Heilshorn, S. C.; Sinclair, R.; Wang, S. X. Formation and properties of magnetic chains for 100 nm nanoparticles used in separation of molecules and cells. J. Magn. Magn. Mater. 2009, 321, 1452–1458.

    Article  CAS  Google Scholar 

  22. Joisten, H.; Courcier, T.; Balint, P.; Sabon, P.; Faure-Vincent, J.; Auffret, S.; Dieny, B. Self-polarization phenomenon and control of dispersion of synthetic antiferromagnetic nanoparticles for biological applications. Appl. Phys. Lett. 2010, 97, 253112.

    Article  Google Scholar 

  23. Dreyfus, R.; Baudry, H.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J. Microscopic artificial swimmer. Nature 2005, 437, 862–865.

    Article  CAS  Google Scholar 

  24. Ghosh, D.; Lee, Y.; Thomas, S.; Kohli, A. G.; Yun, D. S.; Belcher, A. M.; Kelly, K. A. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol. 2012, 7, 677–682.

    Article  CAS  Google Scholar 

  25. Ooi, C.; Earhart, C. M.; Wilson, R. J.; Wang, S. X. Effect of magnetic field gradient on effectiveness of the magnetic sifter for cell purification. IEEE T. Magn. 2013, 49, 316–320.

    Article  Google Scholar 

  26. Johnston, B. M.; Johnston, P. R.; Corney, S.; Kilpatrick, D. Non-newtonian blood flow in human right coronary arteries: Steady state simulations. J. Biomech. 2004, 37, 709–720.

    Article  Google Scholar 

  27. Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L. L.; Shipley, H. J.; Kan, A.; Tomson, M. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006, 314, 964–967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan X. Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Earhart, C.M., Ooi, C. et al. Functionalization of high-moment magnetic nanodisks for cell manipulation and separation. Nano Res. 6, 745–751 (2013). https://doi.org/10.1007/s12274-013-0352-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0352-4

Keywords

Navigation