Skip to main content
Log in

Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper we report a multifunctional nanostructured surface on glass that, for the first time, combines a wide range of optical, wetting and durability properties, including low omnidirectional reflectivity, low haze, high transmission, superhydrophobicity, oleophobicity, and high mechanical resistance. Nanostructures have been fabricated on a glass surface by reactive ion etching through a nanomask, which is formed by dewetting ultrathin metal films (< 10 nm thickness) subjected to rapid thermal annealing (RTA). The nanostructures strongly reduce the initial surface reflectivity (∼4%), to less than 0.4% in the 390–800 nm wavelength range while keeping the haze at low values (< 0.9%). The corresponding water contact angle (θ c) is ∼24.5°, while that on a flat surface is ∼43.5°. The hydrophilic wetting nanostructure can be changed into a superhydrophobic and oleophobic surface by applying a fluorosilane coating, which achieves contact angles for water and oil of ∼156.3° and ∼116.2°, respectively. The multicomponent composition of the substrate (Corning® glass) enables ion exchange through the surface, so that the nanopillars’ mechanical robustness increases, as is demonstrated by the negligible changes in surface morphology and optical performance after 5,000-run wipe test. The geometry of the nanoparticles forming the nanomask depends on the metal material, initial metal thickness and RTA parameters. In particular we show that by simply changing the initial thickness of continuous Cu films we can tailor the metal nanoparticles’ surface density and size. The developed surface nanostructuring does not require expensive lithography, thus it can be controlled and implemented on an industrial scale, which is crucial for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varghese, O. K.; Paulose, M.; Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597.

    Article  CAS  Google Scholar 

  2. Formica, N.; Ghosh, D. S.; Chen, T. L.; Eickhoff, C.; Bruder, I.; Pruneri, V. Highly stable Ag-Ni based transparent electrodes on pet substrates for flexible organic solar cells. Sol. Energ. Mat. Sol. C 2012, 107, 63–68.

    Article  CAS  Google Scholar 

  3. Görrn, P.; Sander, M.; Meyer, J.; Kröger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Riedl, T. Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 2006, 18, 738–741.

    Article  Google Scholar 

  4. Ren, H. W.; Fox, D. W.; Wu, B.; Wu, S. T. Liquid crystal lens with large focal length tunability and low operating voltage. Opt. Express 2007, 15, 11328–11335.

    Article  CAS  Google Scholar 

  5. Cheylan, S.; Ghosh, D. S.; Krautz, D.; Chen, T. L.; Pruneri, V. Organic light-emitting diode with indium-free metallic bilayer as transparent anode. Org. Electron. 2011, 12, 818–822.

    Article  CAS  Google Scholar 

  6. Li, Y. F.; Li, F.; Zhang, J. H.; Wang, C. L.; Zhu, S. J.; Yu, H. J.; Wang, Z. H.; Yang, B. Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Appl. Phys. Lett. 2010, 96, 153305.

    Article  Google Scholar 

  7. Tulli, D.; Janner, D.; Garcia-Granda, M.; Ricken, R.; Pruneri, V. Electrode-free optical sensor for high voltage using a domain-inverted lithium niobate waveguide near cut-off. Appl. Phys. B 2011, 103, 399–403.

    Article  CAS  Google Scholar 

  8. Dannberg, P.; Erdmann, L.; Bierbaum, R.; Krehl, A.; Bräuer, A.; Kley, E. B. Micro-optical elements and their integration to glass and optoelectronic wafers. Microsyst. Technol. 1999, 6, 41–47.

    Article  Google Scholar 

  9. Hecht, E. Interference. In Optics, 4th ed. Addison-Wesley: San Francisco, 2001; pp 428–431.

    Google Scholar 

  10. Lalanne, P.; Morris, G. M. Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain. SPIE 1996, 2776, 300–309.

    Article  CAS  Google Scholar 

  11. Guenther, K. H. Physical and chemical aspects in the application of thin films on optical elements. Appl. Optics 1984, 23, 3612–3632.

    Article  CAS  Google Scholar 

  12. Parker, A. R.; Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2007, 2, 347–353.

    Article  CAS  Google Scholar 

  13. Chen, J. Y.; Chang, W. L.; Huang, C. K.; Sun, K. W. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Opt. Express 2011, 15, 14411–14419.

    Article  Google Scholar 

  14. Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Bläsi, B.; Heinzel, A.; Sporn, D.; Döll, W.; Wittwer, V. Subwavelength-structured antireflective surfaces on glass. Thin Solid Films 1999, 351, 73–78.

    Article  CAS  Google Scholar 

  15. Min, W. L.; Jiang, B.; Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 2008, 20, 3914–3918.

    Article  CAS  Google Scholar 

  16. Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Jia, F.; Wang, Z. H.; Sun, Z. Q.; Zhang, L.; Li, Y.; Li, H. B.; Xu, W. Q.; Yang, B. Biomimetic surfaces for high-performance optics. Adv. Mater. 2009, 21, 4731–4734.

    CAS  Google Scholar 

  17. Zhu, J.; Hsu, C. M.; Yu, Z. F.; Fan, S. H.; Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2010, 10, 1979–1984.

    Article  CAS  Google Scholar 

  18. Leem, J. W.; Yeh, Y.; Yu, J. S. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Opt. Express 2012, 20, 4056–4066.

    Article  CAS  Google Scholar 

  19. Lohmüller, T.; Helgert, M.; Sundermann, M.; Brunner, R.; Spatz, J. P. Biomimetic interfaces for high-performance optics in the deep-UV light range. Nano Lett. 2008, 8, 1429–1433.

    Article  Google Scholar 

  20. Morhard, C.; Pacholski, C.; Brunner, R.; Helgert, M.; Lehr, D.; Spatz, J. Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements. IEEE-NANO 2011, 116–121.

    Google Scholar 

  21. Hein, E.; Fox, D.; Fouckhardt, H. Lithography-free glass surface modification by self-masking during dry etching. J. Nanophotonics 2011, 5, 051703.

    Article  Google Scholar 

  22. Bessonov, A.; Kim, J. G.; Seo, J. W.; Lee, J. W.; Lee, S. Design of patterned surfaces with selective wetting using nanoimprint lithography. Macromol. Chem. Phys. 2010, 211, 2636–2641.

    Article  CAS  Google Scholar 

  23. Schulze, M.; Fuchs, H. J.; Kley, E. B.; Tünnermann, A. New approach for antireflective fused silica surfaces by statistical nanostructures. SPIE 2008, 6883, 68830N.

    Article  Google Scholar 

  24. Camargo, K. C.; Michels, A. F.; Rodembusch, F. S.; Horowitz, F. Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region. Chem. Commun. 2012, 48, 4992–4994.

    Article  CAS  Google Scholar 

  25. MacLeod, B. D.; Hobbs, D. S. Low-cost anti-reflection technology for automobile displays. In SID Vehicle Display conference, Canton, USA, 2004.

    Google Scholar 

  26. Park, K. C.; Choi, H. J.; Chang, C. H.; Cohen, R. E.; McKinleyand, G. H.; Barbastathis, G. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity. ACS Nano 2012, 6, 3789–3799.

    Article  CAS  Google Scholar 

  27. Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99.

    Article  Google Scholar 

  28. Ganesh, V. A.; Raut, H. K.; Nair, A. S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322.

    Article  CAS  Google Scholar 

  29. Hobbs, D. S.; MacLeod, B. D.; Kelsey, A. F.; Leclerc, M. A.; Sabatino III, E.; Resler, D. P. Automated interference lithography systems for generation of sub-micron feature size patterns. SPIE 1999, 3879, 124–135.

    Article  CAS  Google Scholar 

  30. Chang, Y. M.; Shieh, J.; Juang, J. Y. Subwavelength antireflective Si nanostructures fabricated by using the self-assembled silver metal-nanomask. J. Phys. Chem. C 2011, 115, 8983–8987.

    Article  CAS  Google Scholar 

  31. Lee, Y.; Koh, K.; Na, H.; Kim, K.; Kang, J. J.; Kim, J. Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 2009, 4, 364–370.

    Article  CAS  Google Scholar 

  32. Dow Corning® 2634 Coating Product Information Datasheet [Online]. http://www2.dowcorning.com/DataFiles/090007c880276ab9.pdf (accessed Apr 2, 2013)

  33. Mochel, E. L. Mechanical strengthening of glass by ion exchange. U.S. Patent 3,485,702, Dec. 23, 1969.

    Google Scholar 

  34. Gentili, D.; Foschi, G.; Valle, F.; Cavallini, M.; Biscarini, F. Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 2012, 41, 4430–4443.

    Article  CAS  Google Scholar 

  35. Taflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Pruneri.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Infante, D., Koch, K.W., Mazumder, P. et al. Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring. Nano Res. 6, 429–440 (2013). https://doi.org/10.1007/s12274-013-0320-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0320-z

Keywords

Navigation