Skip to main content
Log in

Design of multi-functional dual hole patterned carbon nanotube composites with superhydrophobicity and durability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against environmental contamination are critical design considerations if intrinsic properties are to be maintained. The aim of this research is to combine the bulk properties of nanocomposites with the superhydrophobic surface properties provided by imprinting techniques to create a single multi-functional system with enhanced bulk properties. We report the development of a highly conductive superhydrophobic nanotube composite, which is directly superimposed with a durable dual hole pattern through imprinting techniques. The dual hole pattern avoids the use of high slenderness ratio structures resulting in a surface which is robust against physical damage. Its stable superhydrophobic properties were characterized both theoretically and experimentally. By incorporating high aspect ratio carbon nanotubes (CNTs), the dual patterned composites can also be effectively used for anti-icing and deicing applications where their superhydrophobic surface suppresses ice formation and their quick electric heating response at low voltage eliminates remaining frost. In addition, superior electromagnetic interference (EMI) shielding effectiveness (SE) was attained, with one of the highest values ever reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung, D. D. L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285.

    Article  CAS  Google Scholar 

  2. Bigg, D. M.; Stutz, D. E. Plastic composites for electromagnetic interference shielding applications. Polym. Compos. 1983, 4, 40–46.

    Article  CAS  Google Scholar 

  3. Peng, M.; Liao, Z. J.; Qi, J.; Zhou, Z. Nonaligned carbon nanotubes partially embedded in polymer matrixes: A novel route to superhydrophobic conductive surfaces. Langmuir 2010, 26, 13572–13578

    Article  CAS  Google Scholar 

  4. Liu, Z. F.; Bai, G.; Huang, Y.; Li, F. F.; Ma, Y. F.; Guo, T. Y.; He, X. B.; Lin, X.; Gao, H. J.; Chen, Y. S. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 2007, 111, 13696–13700.

    Article  CAS  Google Scholar 

  5. Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645.

    Article  CAS  Google Scholar 

  6. Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507–514.

    Article  CAS  Google Scholar 

  7. Park, S. H.; Bandaru, P. R. Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 2010, 51, 5071–5077.

    Article  CAS  Google Scholar 

  8. Park, S. H.; Thielemann, P.; Asbeck, P.; Bandaru, P. R. Enhanced dielectric constants and shielding effectiveness of, uniformly dispersed, functionalized carbon nanotube composites. Appl. Phys. Lett. 2009, 94, 243111.

    Article  Google Scholar 

  9. Sohn, Y.; Lee, S.; Kim, D.; Chu, K.; Kim, D.; Kim, H.; Han, I. Low temperature reliability of carbon nanotube/silicone superhydrophobic coatings. In Proceedings of the 44th International Symposium on Microelectronices (IMAPS 2011), Long Beach, USA, 2011, pp 857–860.

    Google Scholar 

  10. Tang, N. J.; Yang, Y.; Lin, K. J.; Zhong, W.; Au, C. T.; Du, Y. W. Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties. J. Phys. Chem. C 2008, 112, 10061–10067.

    Article  CAS  Google Scholar 

  11. Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677.

    Article  Google Scholar 

  12. Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Transformation of a simple plastic into a superhydrophobic surface. Science 2003, 299, 1377–1380.

    Article  CAS  Google Scholar 

  13. Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater. 1999, 11, 1365–1368.

    Article  CAS  Google Scholar 

  14. Sun, T. L.; Tan, H.; Han, D.; Fu, Q.; Jiang, L. No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 2005, 1, 959–963.

    Article  CAS  Google Scholar 

  15. Furstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 2005, 21, 956–961.

    Article  Google Scholar 

  16. Takei, G.; Nonogi, M.; Hibara, A.; Kitamori, T.; Kim, H. B. Tuning microchannel wettability and fabrication of multiple-step laplace valves. Lab Chip 2007, 7, 596–602.

    Article  CAS  Google Scholar 

  17. Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

    Article  CAS  Google Scholar 

  18. Krupenkin, T. N.; Taylor, J. A.; Schneider, T. M.; Yang, S. From rolling ball to complete wetting: The dynamic tuning of liquids on nanostructured surfaces. Langmuir 2004, 20, 3824–3827.

    Article  CAS  Google Scholar 

  19. Zhu, L. B.; Xiu, Y. H.; Xu, J. W.; Tamirisa, P. A.; Hess, D. W.; Wong, C. P. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 2005, 21, 11208–11212.

    Article  CAS  Google Scholar 

  20. Zhang, L.; Resasco, D. E. Single-walled carbon nanotube pillars: A superhydrophobic surface. Langmuir 2009, 25, 4792–4798.

    Article  CAS  Google Scholar 

  21. Zou, J. H.; Chen, H.; Chunder, A.; Yu, Y. X.; Huo, Q.; Zhai, L. Preparation of a superhydrophobic and conductive nanocomposite coating from a carbon-nanotube-conjugated block copolymer dispersion. Adv. Mater. 2008, 20, 3337–3341.

    Article  CAS  Google Scholar 

  22. Liu, B.; He, Y. N.; Fan, Y.; Wang, X. G. Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromol. Rapid Commun. 2006, 27, 1859–1864.

    Article  CAS  Google Scholar 

  23. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551

    Article  CAS  Google Scholar 

  24. Johnson, R. E.; Dettre, R. H. Contact angle hysteresis. In Contact Angle, Wettability, and Adhesion. Fowkes, F. M., Ed.; American Chemical Society: Washington, D. C., 1964; pp 112–135.

    Chapter  Google Scholar 

  25. Rosca, I. D.; Hoa, S. V. Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 2009, 47, 1958–1968.

    Article  CAS  Google Scholar 

  26. Avedisian, C. T.; Cavicchi, R. E.; McEuen, P. M.; Zhou, X. J.; Hurst, W. S.; Hodges, J. T. High temperature electrical resistance of substrate-supported single walled carbon nanotubes. Appl. Phys. Lett. 2008, 93, 252108.

    Article  Google Scholar 

  27. Hewitt, C. A.; Kaiser, A. B.; Roth, S.; Craps, M.; Czerw, R.; Carroll, D. L. Varying the concentration of single walled carbon nanotubes in thin film polymer composites, and its effect on thermoelectric power. Appl. Phys. Lett. 2011, 98, 183110.

    Article  Google Scholar 

  28. Neitzert, H. C.; Vertuccio, L.; Sorrentino, A. Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans. Nanotechnol. 2011, 10, 688–693.

    Article  Google Scholar 

  29. Pozar, D. M. Microwave engineering; John Wiley & Sons, Inc.: Hoboken, 1998.

    Google Scholar 

  30. Huang, Y.; Li, N.; Ma, Y. F.; Du, F.; Li, F. F.; He, X. B.; Lin, X.; Gao, H. J.; Chen, Y. S. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 2007, 45, 1614–1621.

    Article  CAS  Google Scholar 

  31. Das, N. C.; Maiti, S. Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites. J. Mater. Sci. 2008, 43, 1920–1925.

    Article  CAS  Google Scholar 

  32. Park, S. H.; Theilmann, P. T.; Asbeck, P. M.; Bandaru, P. R. Enhanced electromagnetic interference shielding through the use of functionalized carbon-nanotube-reactive polymer composites. IEEE Trans. Nanotechnol. 2010, 9, 464–469.

    Article  Google Scholar 

  33. Kim, H. M.; Kim, K.; Lee, C. Y.; Joo, J.; Cho, S. J.; Yoon, H. S.; Pejakovic, D. A.; Yoo, J. W.; Epstein, A. J. Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 2004, 84, 589–591.

    Article  CAS  Google Scholar 

  34. Morgan, S. P. Effects of surface roughness on eddy current losses at microwave frequencies. J. Appl. Phys. 1949, 20, 352–362.

    Article  Google Scholar 

  35. Tsang, L.; Gli, X. X.; Braunisch, H. Effects of random rough surface on absorption by conductors at microwave frequencies. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 221–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Hoon Park or Eun-Hyoung Cho.

Additional information

These authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SH., Cho, EH., Sohn, J. et al. Design of multi-functional dual hole patterned carbon nanotube composites with superhydrophobicity and durability. Nano Res. 6, 389–398 (2013). https://doi.org/10.1007/s12274-013-0316-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0316-8

Keywords

Navigation