Skip to main content
Log in

Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior

  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a “quadra-twin core” growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show lowtemperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.

    Article  CAS  Google Scholar 

  2. Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696–1709.

    Article  CAS  Google Scholar 

  3. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.

    Article  CAS  Google Scholar 

  4. Giebultowicz, T. M.; Samarth, N.; Luo, H.; Furdyna, J. K.; Klosowski, P.; Rhyne, J. J. Strain-engineered incommensurability in epitaxial Heisenberg antiferromagnets. Phys. Rev. B 1992, 46, 12076–12079.

    Article  CAS  Google Scholar 

  5. Goede, O.; Heimbrodt, W. Optical properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystals and superlattices. Phys. Stat. Solidi B 1988, 146, 11–62.

    Article  CAS  Google Scholar 

  6. Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 1988, 64, R29–R64.

    Article  CAS  Google Scholar 

  7. Peng, Q.; Dong, Y. J.; Deng, Z. X.; Kou, H. Z.; Gao, S.; Li, Y. D. Selective synthesis and magnetic properties of α-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106, 9261–9265.

    Article  CAS  Google Scholar 

  8. Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.

    Article  CAS  Google Scholar 

  9. Levy, L.; Feltin, N.; Ingert, D.; Pileni, M. P. Three dimension- ally diluted magnetic semiconductor clusters Cd1-y MnyS with a range of sizes and compositions: Dependence of spectroscopic properties on the synthesis mode. J. Phys. Chem. B 1997, 101, 9153–9160.

    Article  CAS  Google Scholar 

  10. Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett. 2001, 1, 429–433.

    Article  CAS  Google Scholar 

  11. Schlesinger, M. E. The Mn-Se (manganese-selenium) system. J. Phase Equilib. 1998, 19, 588–590.

    Article  CAS  Google Scholar 

  12. Lindsay, R. Magnetic susceptibility of manganese selenide. Phys. Rev. 1951, 84, 569–571.

    Article  CAS  Google Scholar 

  13. Thanigaimani, V.; Angahi, M. A. Optical properties of MnSe thin films. Thin Solid Films 1994, 245, 146–151.

    Article  CAS  Google Scholar 

  14. Wu, M. Z.; Xiong, Y.; Jiang, N.; Ning, M.; Chen, Q. W. Hydrothermal preparation of α-MnSe and MnSe2 nanorods. J. Cryst. Growth 2004, 262, 567–571.

    Article  CAS  Google Scholar 

  15. Qin, T.; Lu, J.; Wei, S.; Qi, P. F.; Peng, Y. Y.; Yang, Z. P.; Qian, Y. T. α-MnSe crystallites though solvothermal reaction in ethylenediamine. Inorg. Chem. Commun. 2002, 5, 369–371.

    Article  CAS  Google Scholar 

  16. Wang, L. C.; Chen, L. Y.; Luo, T.; Bao, K. Y.; Qian, Y. T. A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process. Solid State Commun. 2006, 138, 72–75.

    Article  CAS  Google Scholar 

  17. Liu, X. D.; Ma, J. M.; Peng, P.; Zheng, W. J. Hydrothermal synthesis of cubic MnSe2 and octahedral α-MnSe microcrystals. J. Cryst. Growth 2009, 311, 1359–1363.

    Article  CAS  Google Scholar 

  18. Kolodziejski, L. A.; Gunshor, R. L.; Otsuka, N.; Gu, B. P.; Hefetz, Y.; Nurmikko, A. V. Two-dimensional metastable magnetic semiconductor structures. Appl. Phys. Lett. 1986, 48, 1482–1484.

    Article  CAS  Google Scholar 

  19. Murray, R. M.; Forbes, B. C.; Heyding, R. D. The preparation and paramagnetic susceptibility of β-MnSe. Can. J. Chem. 1972, 50, 4059–4061.

    Article  CAS  Google Scholar 

  20. Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem. Int. Ed. 2010, 49, 4638–4640.

    Article  CAS  Google Scholar 

  21. Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: Optical and magnetic properties. Cryst. Eng. Comm. 2012, 14, 6916–6920.

    Article  CAS  Google Scholar 

  22. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.-E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.

    Article  CAS  Google Scholar 

  23. Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

    Article  CAS  Google Scholar 

  24. Peng, Z. A.; Peng, X. Nearly monodisperse and shape- controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

    Article  CAS  Google Scholar 

  25. Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

    Article  CAS  Google Scholar 

  26. Gautam, U. K.; Panchakarla, L. S.; Dierre, B.; Fang, X. S.; Bando, Y.; Sekiguchi, T.; Govindaraj, A.; Golberg, D.; Rao, C. N. R. Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv. Funct. Mater. 2009, 19, 131–140.

    Article  CAS  Google Scholar 

  27. Ding, Y.; Ma, C.; Wang, Z. L. Self-catalysis and phase transformation in the formation of CdSe nanosaws. Adv. Mater. 2004, 16, 1740–1743.

    Article  CAS  Google Scholar 

  28. Ma, C.; Wang, Z. L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws-a step towards nanomanufacturing. Adv. Mater. 2005, 17, 2635–2639.

    Article  CAS  Google Scholar 

  29. Manna, L.; Scher, E. C.; Alivisatos, A. P. Shape control of colloidal semiconductor nanocrystals. J. Cluster Sci. 2002, 13, 521–532.

    Article  CAS  Google Scholar 

  30. Jun, Y.-W.; Lee, S.-M.; Kang, N.-J.; Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 2001, 123, 5150–5151.

    Article  CAS  Google Scholar 

  31. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

    Article  CAS  Google Scholar 

  32. Chen, M.; Xie, Y.; Lu, J.; Xiong, Y. J.; Zhang, S. Y.; Qian, Y. T.; Liu, X. M. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem. 2002, 12, 748–753.

    Article  CAS  Google Scholar 

  33. Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15, 4300–4308.

    Article  CAS  Google Scholar 

  34. Carbone, L.; Kudera, S.; Carlino, E.; Parak, W. J.; Giannini, C.; Cingolani, R.; Manna, L. Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J. Am. Chem. Soc. 2006, 128, 748–755.

    Article  CAS  Google Scholar 

  35. Iwanaga, H.; Fujii, M.; Takeuchi, S. Growth model of tetrapod zinc oxide particles. J. Cryst. Growth 1993, 134, 275–280.

    Article  CAS  Google Scholar 

  36. Hu, J. Q.; Bando, Y.; Golberg, D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 2005, 1, 95–99.

    Article  CAS  Google Scholar 

  37. Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

    Article  CAS  Google Scholar 

  38. Kanaras, A. G.; Sönnichsen, C.; Liu, H.; Alivisatos, A. P. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett. 2005, 5, 2164–2167.

    Article  CAS  Google Scholar 

  39. Lee, G. H.; Huh, S. H.; Jeong, J. W.; Choi, B. J.; Kim, S. H.; Ri, H. C. Anomalous magnetic properties of MnO nanoclusters. J. Am. Chem. Soc. 2002, 124, 12094–12095.

    Article  CAS  Google Scholar 

  40. Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti, A. Monodisperse octahedral α-MnS and MnO nanoparticles by the decomposition of manganese oleate in the presence of sulfur. Chem. Mater. 2010, 22, 2804–2813.

    Article  CAS  Google Scholar 

  41. Xu, M. H.; Zhong, W.; Yu, J. Y.; Zang, W. C.; Au, C.; Yang, Z. X.; Lv, L. Y.; Du, Y. W. Exchange-bias-like behavior from disordered surface spins in Li4Mn5O12 nanosticks. J. Phys. Chem. C 2010, 114, 16143–16147.

    Article  CAS  Google Scholar 

  42. Díaz-Guerra, C.; Vila, M.; Piqueras, J. Exchange bias in single-crystalline CuO nanowires. Appl. Phys. Lett. 2010, 96, 193105.

    Article  Google Scholar 

  43. Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 1115–1117.

    Article  CAS  Google Scholar 

  44. Schladt, T. D.; Graf, T.; Tremel, W. Synthesis and characterization of monodisperse manganese oxide nanoparticles-evaluation of the nucleation and growth mechanism. Chem. Mater. 2009, 21, 3183–3190.

    Article  CAS  Google Scholar 

  45. Tian, Q. W.; Tang, M. H.; Jiang, F. R.; Liu, Y. W.; Wu, J. H.; Zou, R. J.; Sun, Y. G.; Chen, Z. G.; Li, R. W.; Hu, J. Q. Large-scaled star-shaped α-MnS nanocrystals with novel magnetic properties. Chem. Commun. 2011, 47, 8100–8102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Che.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Supplementary material, approximately 727 KB.

Supplementary material, approximately 1.44 MB.

Supplementary material, approximately 1.75 MB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, F., Zhao, X. et al. Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior. Nano Res. 6, 275–285 (2013). https://doi.org/10.1007/s12274-013-0305-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0305-y

Keywords

Navigation