Skip to main content
Log in

Vibrational properties of silicene and germanene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predict that the silicene (germanene) structure with a small buckling of 0.44 Å (0.7 Å) and bond lengths of 2.28 Å (2.44 Å) is energetically the most favorable, and it does not exhibit imaginary phonon mode. The calculated non-resonance Raman spectra of silicene is characterized by a main peak at about 575 cm−1, namely the G-like peak. For germanene, the highest peak is at about 290 cm−1. Extensive calculations on armchair silicene nanoribbons and armchair germanene nanoribbons are also performed, with and without hydrogenation of the edges. The studies reveal other Raman peaks mainly distributed at lower frequencies than the G-like peak which could be attributed to the defects at the edges of the ribbons, thus not present in the Raman spectra of non-defective silicene and germanene. Particularly the Raman peak corresponding to the D mode is found to be located at around 515 cm−1 for silicene and 270 cm−1 for germanene. The calculated G-like and the D peaks are likely the fingerprints of the Raman spectra of the low-buckled structures of silicene and germanene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guzmán-Verri, G. G.; Lew Yan Voon, L. C. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131.

    Article  Google Scholar 

  2. Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.

    Article  Google Scholar 

  3. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  CAS  Google Scholar 

  4. Houssa, M.; Pourtois, G.; Afanaśev, V. V.; Stesmans, A. Electronic properties of two-dimensional hexagonal germanium. Appl. Phys. Lett. 2010, 96, 082111.

    Article  Google Scholar 

  5. Léandri, C.; Oughaddou, H.; Aufray, B.; Gay, J. M.; Le Lay, G.; Ranguis, A.; Garreau, Y. Growth of Si nanostructures on Ag(001). Surf. Sci. 2007, 601, 262–267.

    Article  Google Scholar 

  6. Léandri, C.; Le Lay, G.; Aufray, B.; Girardeaux, C.; Avila, J.; Dávila, M. E.; Asensio, M. C.; Ottaviani, C.; Cricenti, A. Self-aligned silicon quantum wires on Ag(110). Surf. Sci. 2005, 574, L9–L15.

    Article  Google Scholar 

  7. Le Lay, G.; Aufray, B.; Léandri, C.; Oughaddou, H.; Biberian, J. -P.; De Padova, P.; Dávila, M. E.; Ealet, B.; Kara, A. Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 2009, 256, 524–529.

    Article  Google Scholar 

  8. Kara, A.; Léandri, C.; Dávila, M. E.; De Padova, P.; Ealet, B.; Oughaddou, H.; Aufray, B.; Le Lay, G. Physics of silicene stripes. J. Supercond. Nov. Magn. 2009, 22, 259–263.

    Article  CAS  Google Scholar 

  9. De Padova, P.; Léandri, C.; Vizzini, S.; Quaresima, C.; Perfetti, P.; Olivieri, B.; Oughaddou, H.; Aufray, B.; Le Lay, G. Burning match oxidation process of silicon nanowires screened at the atomic scale. Nano Lett. 2008, 8, 2299–2304.

    Article  Google Scholar 

  10. Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Léandri, C.; Ealet, B.; Le Lay, G. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicone. Appl. Phys. Lett. 2010, 96, 183102.

    Article  Google Scholar 

  11. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

    Article  Google Scholar 

  12. De Padova, P.; Quaresima, C.; Ottaviani, C.; Sheverdyaeva, P. M.; Moras, P.; Carbone, C.; Topwal, D.; Olivieri, B.; Kara, A.; Oughaddou, H.; Aufray, B.; Lay, G. L. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 2010, 96, 261905.

    Article  Google Scholar 

  13. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  14. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  Google Scholar 

  15. Scalise, E.; Houssa, M.; Pourtois, G.; Afanaśev, V. V.; Stesmans, A. First-principles study of strained 2D MoS2. Physica E, in press, DOI: 10.1016/j.physe.2012.07.029.

  16. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

    Article  CAS  Google Scholar 

  17. Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Shen, Z. X.; Hill, E. H.; Novoselov, K. S.; Geim, A. K. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 2010, 10, 3868–3872.

    Article  CAS  Google Scholar 

  18. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009, 21, 395502.

    Article  Google Scholar 

  19. Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Pseudopotentials that work: From H to Pu. Phys. Rev. B 1982, 26, 4199–4228.

    Article  CAS  Google Scholar 

  20. Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562.

    Article  CAS  Google Scholar 

  21. Lazzeri, M.; Mauri, F. First-principles calculation of vibrational raman spectra in large systems: Signature of small rings in crystalline SiO2. Phys. Rev. Lett. 2003, 90, 036401.

    Article  Google Scholar 

  22. Parker, J. H.; Feldman, D. W.; Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 1967, 155, 712–714.

    Article  CAS  Google Scholar 

  23. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.

    Article  CAS  Google Scholar 

  24. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  25. Samarakoon, D. K.; Wang, X. Q. Twist-boat conformation in graphene oxides. Nanoscale 2011, 3, 192–195.

    Article  CAS  Google Scholar 

  26. Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

    Article  CAS  Google Scholar 

  27. Zhou, J.; Dong, J. M. Vibrational property and Raman spectrum of carbon nanoribbon. Appl. Phys. Lett. 2007, 91, 173108.

    Article  Google Scholar 

  28. Ren, W. C.; Saito, R.; Gao, L. B.; Zheng, F. W.; Wu, Z. S.; Liu, B. L.; Furukawa, M.; Zhao, J. P.; Chen, Z. P.; Cheng, H. M. Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. Phys. Rev. B 2010, 81, 035412.

    Article  Google Scholar 

  29. Ryu, S.; Maultzsch, J.; Han, M. Y.; Kim, P.; Brus, L. E. Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 2011, 5, 4123–4130.

    Article  CAS  Google Scholar 

  30. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

    Article  CAS  Google Scholar 

  31. Lazzeri, M.; Attaccalite, C.; Wirtz, L.; Mauri, F. Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Phys. Rev. B 2008, 78, 081406(R).

    Article  Google Scholar 

  32. Ding, Y.; Ni, J. Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 2009, 95, 083115.

    Article  Google Scholar 

  33. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  34. Cahangirov, S.; Topsakal, M.; Ciraci, S. Armchair nanoribbons of silicon and germanium honeycomb structures. Phys. Rev. B 2010, 81, 195120.

    Article  Google Scholar 

  35. Koskinen, P.; Malola, S.; Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Scalise.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalise, E., Houssa, M., Pourtois, G. et al. Vibrational properties of silicene and germanene. Nano Res. 6, 19–28 (2013). https://doi.org/10.1007/s12274-012-0277-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0277-3

Keywords

Navigation