Skip to main content
Log in

Charge transfer and retention in directly coupled Au-CdSe nanohybrids

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The energy and charge transfer dynamics of directly coupled Au-CdSe hybrid nanocrystals have been studied using time-resolved photoluminescence (PL) techniques. The PL of such nanohybrids was found to be quenched dramatically compared to that of both CdSe quantum dots and mixtures of CdSe quantum dots with Au nanoparticles. Fluorescence decay curves of the Au-CdSe nanohybrids show three distinct decay channels with the fastest one associated with the transfer of electrons from the CdSe portion to the Au portion. The holes on the CdSe portion created by such charge transfer were then quickly taken away by the solution, while the electrons on the Au portion slowly leaked into the solution as well, thus serving as a reductant for redox reactions. Using a model reaction based on the reduction of methylene blue by the leaking electrons, our photocatalytic experiments indicate that the electrons can be temporarily retained in the Au portion (most likely at the Au-capping agent interface) for a dramatically long timescale, up to 100 min. Finally, by merging all of the observations in the time-resolved PL measurements, we were able to figure out a relatively complete picture of charge transfer and retention in the Au-CdSe nanohybrids. This picture is expected to guide researchers in designing modern photocatalysts and solar cells constructed from nanoscale metal-semiconductor hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

    Article  CAS  Google Scholar 

  2. Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 2010, 49, 4878–4897.

    Article  CAS  Google Scholar 

  3. Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.

    Article  CAS  Google Scholar 

  4. Achermann, M. Exciton-plasmon interactions in metal-semiconductor nanostructures. J. Phys. Chem. Lett. 2010, 1, 2837–2843.

    Article  CAS  Google Scholar 

  5. Gueroui, Z.; Libchaber, A. Single-molecule measurements of gold-quenched quantum dots. Phys. Rev. Lett. 2004, 93, 166108.

    Article  Google Scholar 

  6. Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 2002, 89, 117401.

    Article  CAS  Google Scholar 

  7. Biteen, J. S.; Pacifici, D.; Lewis, N. S.; Atwater, H. A. Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. Nano Lett. 2005, 5, 1768–1773.

    Article  CAS  Google Scholar 

  8. Govorov, A. O.; Lee, J.; Kotov, N. A. Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys. Rev. B 2007, 76, 125308.

    Article  Google Scholar 

  9. Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 2006, 96, 113002.

    Article  Google Scholar 

  10. Kühn, S.; Mori, G.; Agio, M.; Sandoghdar, V. Modification of single molecule fluorescence close to a nanostructure: Radiation pattern, spontaneous emission and quenching. Mol. Phys. 2008, 106, 893–908.

    Article  Google Scholar 

  11. Dong, Z. C.; Zhang, X. L.; Gao, H. Y.; Luo, Y.; Zhang, C.; Chen, L.G.; Zhang, R.; Tao, X.; Zhang, Y.; Yang, J. L.; Hou, J. G. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat. Photonics 2010, 4, 50–54.

    Article  CAS  Google Scholar 

  12. Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.

    Article  CAS  Google Scholar 

  13. Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B. Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127, 34–35.

    Article  CAS  Google Scholar 

  14. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.

    Article  CAS  Google Scholar 

  15. Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 5664–5665.

    Article  CAS  Google Scholar 

  16. Mokari, T.; Sztrum, G. C.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.

    Article  CAS  Google Scholar 

  17. Zeng, J.; Huang, J. L.; Liu, C.; Wu. C. H.; Lin, Y.; Wang, X. P.; Zhang, S. Y.; Hou, J. G.; Xia, Y. N. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv. Mater. 2010, 22, 1936–1940.

    CAS  Google Scholar 

  18. Steiner, D.; Mokari, T.; Banin, U.; Millo. O. Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. Phys. Rev. Lett. 2005, 95, 056805.

    Article  CAS  Google Scholar 

  19. Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U. Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett. 2008, 8, 637–641.

    Article  CAS  Google Scholar 

  20. Haldar, K. K.; Sen, T.; Patra, A. Metal conjugated semiconductor hybrid nanoparticle-based fluorescence resonance energy transfer. J. Phys. Chem. C 2010, 114, 4869–4874.

    Article  CAS  Google Scholar 

  21. Hosoki, K.; Tayagaki, T.; Yamamato, S.; Matsuda, K.; Kanemitsu, Y. Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films. Phys. Rev. Lett. 2008, 100, 207404.

    Article  Google Scholar 

  22. Muller, B. R.; Majoni, S.; Meissner, D.; Memming, R. Photocatalytic oxidation of ethanol on micrometer- and nanometer-sized semiconductor particles. J. Photochem. Photobiol. A-Chem. 2002, 151, 253–265.

    Article  CAS  Google Scholar 

  23. Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U. Au growth on semiconductor nanorods: Photoinduced versus thermal growth mechanisms. J. Am. Chem. Soc. 2009, 131, 17406–17411.

    Article  CAS  Google Scholar 

  24. Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 1997, 101, 3706–3712.

    Article  CAS  Google Scholar 

  25. Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS-Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.

    Article  CAS  Google Scholar 

  26. Zeng, J.; Lu, W.; Wang, X. P.; Wang, B.; Wang, G. Z.; Hou, J. G. Fine tuning photoluminescence properties of CdSe nanoparticles by surface states modulation. J. Colloid Interface Sci. 2006, 298, 685–688.

    Article  CAS  Google Scholar 

  27. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 2000, 104, 6112–6123.

    Article  CAS  Google Scholar 

  28. Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E. Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states. J. Chem. Phys. 1992, 96, 946–954.

    Article  CAS  Google Scholar 

  29. Ito, Y.; Matsuda, K.; Kanemitsu, Y. Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces. Phys. Rev. B 2007, 75, 033309.

    Article  Google Scholar 

  30. Hallock, A. J.; Berman, E. S. F.; Zare, R. N. Ultratrace kinetic measurements of the reduction of methylene blue. J. Am. Chem. Soc. 2003, 125, 1158–1159.

    Article  CAS  Google Scholar 

  31. Huang, J.; Huang, Z. Q.; Yang, Y.; Zhu, H. M.; Lian, T. Q. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J. Am. Chem. Soc. 2010, 132, 4858–4864.

    Article  CAS  Google Scholar 

  32. Ohgi, T.; Sheng, H. Y.; Dong, Z. C.; Nejoh, H.; Fujita, D. Charging effects in gold nanoclusters grown on octanedithiol layers. Appl. Phys. Lett. 2001, 79, 2453–2455.

    Article  CAS  Google Scholar 

  33. Jana, N. R.; Peng, X. G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 2003, 125, 14280–14281.

    Article  CAS  Google Scholar 

  34. Bardhan, M.; Mandal, P.; Tzeng, W. B.; Ganguly, T. Investigations on the photoreactions of phenothiazine and phenoxazine in presence of 9-cyanoanthracene by using steady state and time resolved spectroscopic techniques. J. Fluoresc. 2010, 20, 1061–1068.

    Article  CAS  Google Scholar 

  35. Zhang, X. L.; Chen, L. G.; Lv, P.; Gao, H. Y.; Wei, S. J.; Dong, Z. C.; Hou, J. G. Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols. Appl. Phys. Lett. 2008, 92, 223118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenchao Dong or Jianguo Hou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Lin, Y., Wei, S. et al. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 5, 88–98 (2012). https://doi.org/10.1007/s12274-011-0188-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0188-8

Keywords

Navigation