Skip to main content
Log in

Sensitization of hydrothermally grown single crystalline TiO2 nanowire array with CdSeS nanocrystals for photovoltaic applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An oriented array of electron transporting nanowires, grown directly on a transparent conductor constitutes an optimal architecture for efficient photovoltaic applications. In addition, semiconductor nanocrystals can work as efficient light absorbers because of their tunable optical properties. In this paper, we use an oriented array of TiO2 nanowires grown directly on a transparent conductive electrode and subsequently sensitized with colloidally grown CdSeS nanocrystal quantum dots (QDs), using an efficient bi-linker assisted methodology, to demonstrate photovoltaic cells. Upon excitation with light, exciton dissociation takes place at the nanowire-nanocrystal interface, after which, electrons are transported to the fluorine-doped tin oxide (FTO) electrode via single-crystalline TiO2 nanowire channels. We demonstrate that an ex situ ligand exchange of QDs followed by sensitization on oxygen-plasma treated TiO2 nanowires results in enhanced loading of QDs, as compared to the in situ ligand exchange approach. An array of 1 μm long TiO2 nanowire sensitized with CdSeS nanocrystals exhibits photovoltaic effects with a short-circuit current of 2–3 mA/cm2, an open circuit voltage of 0.6–0.7 V and a fill factor of 52–65%, resulting in devices with efficiencies of up to 0.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnham, K. W. J.; Mazzer, M.; Clive, B. Resolving the energy crisis: Nuclear or photovoltaics? Nat. Mater. 2006, 5, 161–164.

    Article  CAS  Google Scholar 

  2. Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.

    Article  CAS  Google Scholar 

  3. Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698.

    Article  CAS  Google Scholar 

  4. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  5. Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japan. J. Appl. Phys. 2006, 45, L638-L640.

    Google Scholar 

  6. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  CAS  Google Scholar 

  7. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  CAS  Google Scholar 

  8. Qu, L.; Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

    Article  CAS  Google Scholar 

  9. Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  CAS  Google Scholar 

  10. Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

    Article  CAS  Google Scholar 

  11. Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I. Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 2006, 6, 424–429.

    Article  CAS  Google Scholar 

  12. Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shaebev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871.

    Article  CAS  Google Scholar 

  13. Fang, J.; Wu, J.; Lu, X.; Shen, Y.; Lu, Z. Sensitization of nanocrystalline TiO2 electrode with quantum sized CdSe and ZnTCPc molecules. Chem. Phys. Lett. 1997, 270, 145–151.

    Article  CAS  Google Scholar 

  14. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393.

    Article  CAS  Google Scholar 

  15. Zaban, A.; Micic, O. I.; Nozik, A. J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 1998, 14, 3153–3156.

    Article  CAS  Google Scholar 

  16. Plass, R.; Plete, S.; Krueger, J.; Grätzel, M. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 2002, 106, 7578–7580.

    Article  CAS  Google Scholar 

  17. Bang, J. H.; Kamat, P. V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476.

    Article  CAS  Google Scholar 

  18. Peter, L. M.; Riley, D. J.; Tull, E. J.; Wijayantha, K. G. U. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem. Commun. 2002, 1030–1031.

  19. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74.

    Article  CAS  Google Scholar 

  20. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.

    Article  CAS  Google Scholar 

  21. Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S. Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 2003, 150, G488–G493.

    Article  CAS  Google Scholar 

  22. Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015.

    Article  CAS  Google Scholar 

  23. van de Lagemaat, J.; Park, N. G.; Frank, A. J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques. J. Phys. Chem. B 2000, 104, 2044–2052.

    Article  Google Scholar 

  24. Oekermann, T.; Zhang, D.; Yoshida, T.; Minoura, H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 2004, 108, 2227–2235.

    Article  CAS  Google Scholar 

  25. Lu, S.; Madhukar, A. Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels. Nano Lett. 2007, 7, 3443–3451.

    Article  CAS  Google Scholar 

  26. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

    Article  CAS  Google Scholar 

  27. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  CAS  Google Scholar 

  28. Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Cartar, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.

    Article  CAS  Google Scholar 

  29. Keis, K.; Lindgren J.; Lindquist, S. E.; Hagfeldt, A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 2000, 16, 4688–4694.

    Article  CAS  Google Scholar 

  30. Kumar, A.; Madaria, A. R.; Zhou, C. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 7787–7792.

    Article  CAS  Google Scholar 

  31. Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

    Article  CAS  Google Scholar 

  32. Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786.

    Article  CAS  Google Scholar 

  33. Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

    Article  CAS  Google Scholar 

  34. Koops, S. E.; O’Regan, B. C.; Barnes, P. R. F.; Durrant, J. R. Parameters influencing the efficiency of electron injection in dye-sensitized solar sells. J. Am. Chem. Soc. 2009, 131, 4808–4818.

    Article  CAS  Google Scholar 

  35. Haque, S. A.; Polomares, E.; Cho, B. M.; Green, A. N. M.; Hirata, N.; Klug, D. R.; Durrant, J. R. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: The minimization of kinetic redundancy. J. Am. Chem. Soc. 2005, 127, 3456–3462.

    Article  CAS  Google Scholar 

  36. Gimenez, S.; Maro-Sero, I.; Macor, L.; Guijarro, N.; Lana-Vilarreal, T.; Gomez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.; Bisquert, J. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 2009, 20, 295204.

    Article  Google Scholar 

  37. Jang, E.; Jun, S.; Pu, L. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem. Commun. 2003, 2964–2965.

  38. Sarma, D. D.; Nag, A.; Santra, P. K.; Kumar, A.; Sapra, S.; Mahadevan, P. Origin of the enhanced photoluminescence from semiconductor CdSeS nanocrystals. J. Phys. Chem. Lett. 2010, 1, 2149–2153.

    Article  CAS  Google Scholar 

  39. Aldana, J.; Wang, Y. A.; Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001, 123, 8844–8850.

    Article  CAS  Google Scholar 

  40. Niitsoo, O.; Sarkar, S. K.; Pejoux, C.; Rühle, S.; Cahen, D.; Hodes, G. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J. Photochem. Photobiol. A 2006, 181, 306–311.

    Article  CAS  Google Scholar 

  41. Nicolau, Y. F.; Dupuy, M.; Brunel, M. ZnS, CdS, and Zn1−x CdxS thin-film deposited by the successive ionic layer adsorption and reaction process. J. Electrochem. Soc. 1990, 137, 2915–2924.

    Article  CAS  Google Scholar 

  42. Kalyuzhny, G.; Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 7012–7021.

    Article  CAS  Google Scholar 

  43. Aldana, J.; Lavelle, N.; Wang, Y.; Peng, X. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J. Am. Chem. Soc. 2005, 127, 2496–2504.

    Article  CAS  Google Scholar 

  44. Sambur, J. B.; Parkinson, B. A. CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces. J. Am. Chem. Soc. 2010, 132, 2130–2131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Li, Kt., Madaria, A.R. et al. Sensitization of hydrothermally grown single crystalline TiO2 nanowire array with CdSeS nanocrystals for photovoltaic applications. Nano Res. 4, 1181–1190 (2011). https://doi.org/10.1007/s12274-011-0168-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0168-z

Keywords

Navigation