Skip to main content
Log in

Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts?

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein is reported the soft-templating synthesis of visible-light photoactive bismuth ferrite (BiFeO3) nanoarchitectures in the form of thin films using a poly(ethylene-co-butylene)-block-poly(ethylene oxide) diblock copolymer as the structure-directing agent. We establish that (1) the self-assembled materials employed in this work are highly crystalline after annealing at 550 °C in air and that (2) neither the bismuth-poor Bi2Fe4O9 phase nor other impurity phases are formed. We further show that there is a distinct restructuring of the high quality cubic pore network of amorphous BiFeO3 during crystallization. This restructuring leads to films with a unique architecture that is composed of anisotropic crystallites intermingled with a continuous mesoporosity. While this article focuses on the characterization of these novel materials by electron microscopy, krypton physisorption, grazing incidence small-angle X-ray scattering, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, UV-vis and Raman spectroscopy, we also examine the photocatalytic properties and show the benefits of the combination of mesoporosity and nanocrystallinity. Templated BiFeO3 thin films (25% porosity) with a direct optical band gap at 2.9 eV exhibit a catalytic activity for the degradation of rhodamine B much better than that of nontemplated samples. We attribute this improvement to the nanoscale porosity, which provides for more available active sites on the photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh, R.; Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29.

    Article  CAS  Google Scholar 

  2. Stolichnov, I.; Riester, S. W. E.; Trodahl, H. J.; Setter, N.; Rushforth, A. W.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.; Jungwirth, T. Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat. Mater. 2008, 7, 464–467.

    Article  CAS  Google Scholar 

  3. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709.

    Article  CAS  Google Scholar 

  4. Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765.

    Article  CAS  Google Scholar 

  5. Cheong, S. W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 2007, 6, 13–20.

    Article  CAS  Google Scholar 

  6. Catalan, G.; Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485.

    Article  CAS  Google Scholar 

  7. Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; Gajek, M.; Han, S. J.; He, Q.; Balke, N.; Yang, C. H.; Lee, D.; Hu, W. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 2008, 7, 478–482.

    Article  CAS  Google Scholar 

  8. Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.

    Article  CAS  Google Scholar 

  9. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 2005, 38, R123–R152.

    Article  CAS  Google Scholar 

  10. Ederer, C.; Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 2005, 71, 060401.

    Article  Google Scholar 

  11. Gao, F.; Chen, X. Y.; Yin, K. B.; Dong, S.; Ren, Z. F.; Yuan, F.; Yu, T.; Zou, Z.; Liu, J. M. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 2007, 19, 2889–2892.

    Article  CAS  Google Scholar 

  12. Yang, H.; Luo, H. M.; Wang, H.; Usov, I. O.; Suvorova, N. A.; Jain, M.; Feldmann, D. M.; Dowden, P. C.; DePaula, R. F.; Jia, Q. X. Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett. 2008, 92, 102113.

    Article  Google Scholar 

  13. Mills, A.; Davies, R. H.; Worsley, D. Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 1993, 22, 417–425.

    Article  CAS  Google Scholar 

  14. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  15. Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C 2005, 6, 186–205.

    Article  CAS  Google Scholar 

  16. Selbach, S. M.; Einarsrud, M. A.; Grande, T. On the thermodynamic stability of BiFeO3. Chem. Mater. 2009, 21, 169–173.

    Article  CAS  Google Scholar 

  17. Mann, S.; Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 1996, 382, 313–318.

    Article  CAS  Google Scholar 

  18. Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11, 2813–2826.

    Article  CAS  Google Scholar 

  19. Goltner, C. G.; Antonietti, M. Mesoporous materials by templating of liquid crystalline phases. Adv. Mater. 1997, 9, 431–436.

    Article  CAS  Google Scholar 

  20. Soler-Illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093–4138.

    Article  Google Scholar 

  21. Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579–585.

    Article  CAS  Google Scholar 

  22. Brezesinski, T.; Wang, J.; Senter, R.; Brezesinski, K.; Dunn, B.; Tolbert, S. H. On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO2 thin films. ACS Nano 2010, 4, 967–977.

    Article  CAS  Google Scholar 

  23. Sel, O.; Sallard, S.; Brezesinski, T.; Rathousky, J.; Dunphy, D. R.; Collord, A.; Smarsly, B. M. Periodically ordered meso- and macroporous SiO2 thin films and their induced electrochemical activity as a function of pore hierarchy. Adv. Funct. Mater. 2007, 17, 3241–3250.

    Article  CAS  Google Scholar 

  24. Brezesinski, K.; Ostermann, R.; Hartmann, P.; Perlich, J.; Brezesinski, T. Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chem. Mater. 2010, 22, 3079–3085.

    Article  CAS  Google Scholar 

  25. Richmann, E. K.; Kang, C. B.; Brezesinski, T.; Tolbert, S. H. Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films. Nano Lett. 2008, 8, 3075–3079.

    Article  Google Scholar 

  26. Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S. O.; Tolbert, S. H.; Smarsly, B. M.; Dunn, B.; Brezesinski, T. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 2010, 132, 6982–6990.

    Article  CAS  Google Scholar 

  27. Cseri, T.; Bekassy, S.; Kenessey, G.; Liptay, G.; Figueras, F. Characterization of metal nitrates and clay supported metal nitrates by thermal analysis. Thermochim. Acta 1996, 288, 137–154.

    Article  CAS  Google Scholar 

  28. Kodama, H. Synthesis of a new compound, Bi5O7NO3, by thermal decomposition. J. Solid State Chem. 1994, 112, 27–30.

    Article  CAS  Google Scholar 

  29. Singh, M. K.; Jang, H. M.; Ryu, S.; Jo, M. H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006, 88, 042907.

    Article  Google Scholar 

  30. Kothari, D.; Reddy, V. R.; Sathe, V. G.; Gupta, A.; Banerjee, A.; Awasthi, A. M. Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 2008, 320, 548–552.

    Article  CAS  Google Scholar 

  31. Yang, Y.; Sun, J. Y.; Zhu, K.; Liu, Y. L.; Chen, J.; Xing, X. R. Raman study of BiFeO3 with different excitation wavelengths. Physica B 2009, 404, 171–174.

    Article  CAS  Google Scholar 

  32. Brezesinski, T.; Groenewolt, M.; Pinna, N.; Amenitsch, H.; Antonietti, M.; Smarsly, B. M. Surfactant-mediated generation of iso-oriented dense and mesoporous crystalline metal-oxide layers. Adv. Mater. 2006, 18, 1827–1831.

    Article  CAS  Google Scholar 

  33. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of Photoelectron Spectroscopy; Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie: Minnesota, USA, 1992.

    Google Scholar 

  34. Jaiswal, A.; Das, R.; Vivekanand, K.; Abraham, P. M.; Adyanthaya, S.; Poddar, P. Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 2010, 114, 2108–2115.

    Article  CAS  Google Scholar 

  35. Gujar, T. P.; Shinde, V. R.; Lokhande, C. D. Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method. Mater. Chem. Phys. 2007, 103, 142–146.

    Article  CAS  Google Scholar 

  36. Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.; Schlom, D. G. Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 2008, 92, 142908.

    Article  Google Scholar 

  37. Clark, S. J.; Robertson, J. Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90, 132903.

    Article  Google Scholar 

  38. Rolison, D. R. Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity. Science 2003, 299, 1698–1701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Brezesinski.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitz, C., Suchomski, C., Weidmann, C. et al. Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts?. Nano Res. 4, 414–424 (2011). https://doi.org/10.1007/s12274-011-0096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0096-y

Keywords

Navigation