Skip to main content
Log in

In Vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The growing use of nanomaterials in commercial goods and novel technologies is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of their potential toxicity. In this context, we investigated the effects of citrate-capped gold nanoparticles (AuNPs) on the model system Drosophila melanogaster upon ingestion. We observed a significant in vivo toxicity of AuNPs, which elicited clear adverse effects in treated organisms, such as a strong reduction of their life span and fertility, presence of DNA fragmentation, as well as a significant overexpression of the stress proteins. Transmission electron microscopy demonstrated the localization of the nanoparticles in tissues of Drosophila. The experimental evidence of high in vivo toxicity of a nanoscale material, which is widely considered to be safe and biocompatible in its bulk form, opens up important questions in many fields, including nanomedicine, material science, health, drug delivery and risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.

    Article  CAS  Google Scholar 

  2. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

    Article  CAS  Google Scholar 

  3. Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.

    Article  CAS  Google Scholar 

  4. Dobrovolskaia, M. A.; Germolec, D. R.; Weaver, J. L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 2009, 4, 411–414.

    Article  CAS  Google Scholar 

  5. Maynard, A. D.; Aitken, R. J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdorster, G.; Philbert, M. A.; Ryan, J.; Seaton, A.; Stone, V.; Tinkle, S. S.; Tran,.; Walker, N. J.; Warheit, D. B. Safe handling of nanotechnology. Nature 2006, 444, 267–269.

    Article  CAS  Google Scholar 

  6. Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428.

    Article  CAS  Google Scholar 

  7. Mortensen, L. J.; Oberdorster, G.; Pentland, A. P.; Delouise, L. A. In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett. 2008, 8, 2779–2787.

    Article  CAS  Google Scholar 

  8. AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290.

    Article  CAS  Google Scholar 

  9. Napierska, D.; Thomassen, L. C.; Rabolli, V.; Lison, D.; Gonzalez, L.; Kirsch-Volders, M.; Martens, J. A.; Hoet, P. H. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009, 5, 846–853.

    Article  CAS  Google Scholar 

  10. Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641.

    Article  CAS  Google Scholar 

  11. Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small 2009, 5, 701–708.

    Article  CAS  Google Scholar 

  12. Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654.

    Article  CAS  Google Scholar 

  13. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.

    Article  CAS  Google Scholar 

  14. Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.

    Article  CAS  Google Scholar 

  15. Pernodet, N.; Fang, X.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766–773.

    Article  CAS  Google Scholar 

  16. Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Sizedependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.

    Article  CAS  Google Scholar 

  17. Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4, 153–159.

    Article  CAS  Google Scholar 

  18. Khan, J. A.; Pillai, B.; Das, T. K.; Singh, Y.; Maiti, S. Molecular effects of uptake of gold nanoparticles in HeLa cells. ChemBioChem 2007, 8, 1237–1240.

    Article  CAS  Google Scholar 

  19. Li, J. J.; Zou, L.; Hartono, D.; Ong, C. N.; Bay, B. H.; Yung, L. Y. L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008, 20, 138–142.

    Article  CAS  Google Scholar 

  20. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

    Article  Google Scholar 

  21. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

    CAS  Google Scholar 

  22. Ja, W. W.; Carvalho, G. B.; Mak, E. M.; de la Rosa, N. N.; Fang, A. Y.; Liong, J. C.; Brummel, T.; Benzer, S. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 2007, 104, 8253–8256.

    Article  CAS  Google Scholar 

  23. Gayathri, M. V.; Krishnamurthy, N. B. Studies on the toxicity of the mercurial fungicide Agallol 3 in Drosophila melanogaster. Environ. Res. 1981, 24, 89–95.

    Article  CAS  Google Scholar 

  24. Auluck, P. K.; Chan, H. Y. E.; Trojanowski, J. Q.; Lee, V. M. Y.; Bonini, N. M. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002, 295, 865–868.

    Article  CAS  Google Scholar 

  25. Kazantsev, A.; Walker, H. A.; Slepko, N.; Bear, J. E.; Preisinger, E.; Steffan, J. S.; Zhu, Y. Z.; Gertler, F. B.; Housman, D. E.; Marsh, J. L.; Thompson, L. M. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. 2002, 30, 367–376.

    Article  CAS  Google Scholar 

  26. Benford, D. J.; Hanley, A. B.; Bottrill, K.; Oehlschlager, S.; Balls, M.; Branca, F.; Castegnaro, J. J.; Descotes, J.; Hemminiki, K.; Lindsay, D.; Schiliter, B. Biomarkers as predictive tools in toxicity testing—The report and recommendations of ECVAM Workshop 40. ATLA-Alternatives to Laboratory Animals 2000, 28, 119–131.

    Google Scholar 

  27. Ahamed, M.; Posgai, R.; Gorey, T. J.; Nielsen, M.; Hussain, S. M.; Rowe, J. J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol., 242, 263–269.

  28. Lin, Y. J.; Seroude, L.; Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 1998, 282, 943–946.

    Article  CAS  Google Scholar 

  29. Zid, B. M.; Rogers, A. N.; Katewa, S. D.; Vargas, M. A.; Kolipinski, M. C.; Lu, T. A.; Benzer, S.; Kapahi, P. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 2009, 139, 149–160.

    Article  CAS  Google Scholar 

  30. Feder, J. H.; Rossi, J. M.; Solomon, J.; Solomon, N.; Lindquist, S. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev. 1992, 6, 1402–1413.

    Article  CAS  Google Scholar 

  31. Singh, M. P.; Reddy, M. M. K.; Mathur, N.; Saxena, D. K.; Chowdhuri, D. K. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: Role of ROS generation. Toxicol. Appl. Pharmacol. 2009, 235, 226–243.

    Article  CAS  Google Scholar 

  32. Morimoto, R. I. Cells in stress: Transcriptional activation of heat shock genes. Science 1993, 259, 1409–1410.

    Article  CAS  Google Scholar 

  33. Pockley, A. G. Heat shock proteins as regulators of the immune response. Lancet 2003, 362, 469–476.

    Article  CAS  Google Scholar 

  34. Tatar, M.; Khazaeli, A. A.; Curtsinger, J. W. Chaperoning extended life. Nature 1997, 390, 30.

    Article  CAS  Google Scholar 

  35. Silbermann, R.; Tatar, M. Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution 2000, 54, 2038–2045.

    CAS  Google Scholar 

  36. Partridge, L.; Gems, D. Mechanisms of ageing: Public or private? Nat. Rev. Genet. 2002, 3, 165–175.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pompa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pompa, P.P., Vecchio, G., Galeone, A. et al. In Vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res. 4, 405–413 (2011). https://doi.org/10.1007/s12274-011-0095-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0095-z

Keywords

Navigation