Review Article

Nano Research

, Volume 2, Issue 12, pp 911-922

Open Access This content is freely available online to anyone, anywhere at any time.

Single-molecule kinetics of nanoparticle catalysis

  • Weilin XuAffiliated withDepartment of Chemistry and Chemical Biology, Cornell University
  • , Hao ShenAffiliated withDepartment of Chemistry and Chemical Biology, Cornell University
  • , Guokun LiuAffiliated withDepartment of Chemistry and Chemical Biology, Cornell University
  • , Peng ChenAffiliated withDepartment of Chemistry and Chemical Biology, Cornell University Email author 

Abstract

Owing to their structural dispersion, the catalytic properties of nanoparticles are challenging to characterize in ensemble-averaged measurements. The single-molecule approach enables studying the catalysis of nanoparticles at the single-particle level with real-time single-turnover resolution. This article reviews our single-molecule fl uorescence studies of single Au-nanoparticle catalysis, focusing on the theoretical formulations for extracting quantitative reaction kinetics from the single-turnover resolution catalysis trajectories. We discuss the single-molecule kinetic formulism of the Langmuir-Hinshelwood mechanism for heterogeneous catalysis, as well as of the two-pathway model for product dissociation reactions. This formulism enables the quantitative evaluation of the heterogeneous reactivity and the differential selectivity of individual nanoparticles that are usually hidden in ensemble measurements. Extension of this formulism to single-molecule catalytic kinetics of oligomeric enzymes is also discussed.
http://static-content.springer.com/image/art%3A10.1007%2Fs12274-009-9100-1/MediaObjects/12274_2009_9100_Fig1_HTML.jpg

Keywords

Single-nanoparticle catalysis single-molecule fluorescence detection Langmuir Hinshelwood mechanism reactivity heterogeneity parallel reaction pathways differential selectivity