Skip to main content
Log in

HPLC–DAD–MS/MS profiling of standardized rosemary extract and enhancement of its anti-wrinkle activity by encapsulation in elastic nanovesicles

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The anti-wrinkle activity of defatted rosemary extract (DER) was assessed, and its effect was optimized by encapsulation in transferosomes (TFs). DER was standardized to a rosmarinic acid content of 4.58 ± 0.023 mg% using reversed-phase high performance liquid chromatography (Rp-HPLC), and its components were identified by HPLC-diode array detection-tandem mass spectrometry. In vitro free radical scavenging assays showed DER had high free radical scavenging activity against 2,2-diphenyl-2-picryl hydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and superoxide radicals. DER also inhibited bleaching of β-carotene with high Fe(III) and Fe(II) chelating ability. In vivo anti-wrinkle activities of topically applied DER (20, 50, and 100 mg) and a TF formulation (TF4, 20 mg of DER) were evaluated in UVB-irradiated mice using a wrinkle scoring method, metalloproteinase (MMP) expression, and histopathology. Among the nanovesicles, TF4 was the most deformable, and had an acceptable size and encapsulation efficiency and enhanced permeation of DER through rat skin compared with unencapsulated DER. DER (50 and 100 mg) and TF4 significantly inhibited MMP-2 and MMP-9 expression and improved wrinkle scores. DER and TF4 moderately decreased epidermal thickness without pigmentation. DER is a potent natural antioxidant for combating skin aging. Moreover, encapsulation of DER in TFs will enhance its skin permeation and anti-wrinkle activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almela L, Sánchez-Muňoz B, Feránndez-López AJ, Roca MJ, Rabe V (2006) Liquid chromatograpic–mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. Chromatogr A 1120:221–229

    Article  CAS  Google Scholar 

  • Alzomor AK, Al-Absi NM, Al-Zubaidi SM (2015) Extraction and formulation of rosemary as anti-wrinkle cream and gel. Eur J Biomed Pharm Sci 2:1–16

    CAS  Google Scholar 

  • Aruoma O, Halliwell B, Aeschbach R, Löliger J (1992) Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica 22:257–268

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Horn TN (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  CAS  PubMed  Google Scholar 

  • Birkedal-Hansen H (1995) Proteolytic remodeling of extracellular matrix. CurrOpin Cell Biol 7:728–735

    Article  CAS  Google Scholar 

  • Bissett DL, Hannon DP, Orr TV (1987) An animal model of solar-aged skin: histological, physical, and visible changes in UV-irradiated hairless mouse skin. Photochem Photobiol 46:367–378

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Scapagnini G, Catalano C, Dinotta F, Geraci D, Morganti P (2000) Biochemical studies of a natural antioxidant isolated from rosemary and its application in cosmetic dermatology. Int J Tissue React 22:5–13

    CAS  PubMed  Google Scholar 

  • Cao H, Cheng WX, Li C, Pan XL, Xie XG, Li TH (2005) DFT study on the antioxidant activity of rosmarinic acid. J Mol Struct 19:177–183

    Article  Google Scholar 

  • Cevc G, Gebauer D, Stieber J, Schatzlein A, Blume G (1998) Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. BiochimBiophysActa 1368:201–215

    CAS  Google Scholar 

  • Chain E, Kemp I (1934) The isoelectric points of lecithin and sphingomyelin. Biochem J 28:2052–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, Del Rio JA, Otuno A, Quirin KW, Dieter G (2003) Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinusofficinalis. J Agric Food Chem 51:4247–4253

    Article  PubMed  Google Scholar 

  • Delazar A, Byres M, Gibbons S, Kumarasamy Y, Modarresi M, Nahar L, Shoeb M, Sarker SD (2004) Iridoid glycosides from Eremostachysglabra. J Nat Prod 67:1584–1587

    Article  CAS  PubMed  Google Scholar 

  • Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T (2011) Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transferosomes. J Drug Del. doi:10.1155/2011/418316

    Google Scholar 

  • Elizabeth K, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  Google Scholar 

  • Fang YP, Tsai YH, Wu PC, Huang TB (2008) Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm 356:144–152

    Article  CAS  PubMed  Google Scholar 

  • Fisher GJ, Datta SC, Talwar HS, Wang ZO, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    Article  CAS  PubMed  Google Scholar 

  • Frankel EN, Huang SW, Aeschbach R, Prior E (1996) Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J Agric Food Chem 44:131–135

    Article  CAS  Google Scholar 

  • Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, Chatterji DP, Vyas SP (2005) Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 293:73–82

    Article  CAS  PubMed  Google Scholar 

  • Inatani R, Nakatani N, Fuwa H (1983) Antioxidative effect of the constituents of Rosemary (Rosmarinusofficinalis L.) and their Derivatives. Agric Biol Chem 47:521–528

    CAS  Google Scholar 

  • Irfan M, Verma S, Vam A (2012) Preparation and characterization of ibuprofen loaded transferosome as a novel carrier for drug delivery system. Asian J Pharm Clin Res 5:162–165

    CAS  Google Scholar 

  • Jia-You F, Yann-Lii L, Chia-Chun C, Chia-Hsuan L, Yi-Hung T (2004) Lipid nano/submicron emulsion as vehicle for topical flurbiprofen delivery. Drug Del 11:97–105

    Article  Google Scholar 

  • Kim DS, Jeon BK, Mun YJ, Kim YM, Lee YYE, Woo WH (2011) Effect of Dioscoreaaimadoimo on anti-aging and skin moisture capacity. J Orient Physiol Pathol 25:425–430

    Google Scholar 

  • Koleva RI, van Beek TA, Linssen JP, de Groot A, Evstatieva LN (2002) Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 13:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kumaran A, Karunakaran RJ (2006) Antioxidant activities of the methanol extract of Cardiospermumhalicacabum. Pharm Biol 44:146–151

    Article  Google Scholar 

  • Lei W, Yu C, Lin H, Zhou X (2013) Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J PharmSci 8:336–345

    Article  Google Scholar 

  • Lichtenberg D, Opatowski E, Kozlov MM (2000) Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. BiochimBiophysActa 1508:1–19

    CAS  Google Scholar 

  • Luis JC, Johnson CB (2005) Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Span J Agric Res 3:106–112

    Article  Google Scholar 

  • Mahor S, Rawat A, Dubey PK, Gupta PN, Khatri K, Goyal AK, Vyas SP (2007) Cationic transfersomes based topical genetic vaccine against hepatitis B. Int J Pharm 340:13–19

    Article  CAS  PubMed  Google Scholar 

  • Manconi M, Caddeo C, Sinico C, Valenti D, Mostallino C, Biggio G, Fadda AN (2011) Ex-vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle–skin interaction. Eur J Pharm Biopharm 78:27–35

    Article  CAS  PubMed  Google Scholar 

  • Modi CD, Bharadia PD (2012) Transfersomes new dominants for transdermal drug delivery. Am J Pharm Tech Res 2:71–91

    Google Scholar 

  • Mulinacci N, Innocenti M, Bellumori M, Giaccherini C, Martini V, Michelozzi M (2011) Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study. Talanta 85:67–176

    Article  Google Scholar 

  • Muñoz-Muñoz JL, Garcia-Molina F, Ros E, Tudela J, García-Canovas F, Rodriguez-Lope JN (2013) Prooxidant and Antioxidant Activities of Rosmarinic Acid. J Food Biochem 37:396–408

    Article  Google Scholar 

  • Mura P, Maestrelli F, Gonzalez-Rodriguez ML, Michelacci J, Ghelardini C, Rabasco AM (2007) Development, characterization and in-vivo evaluation of benzocaine-loaded liposomes. Eur J Pharm Biopharm 67:86–95

    Article  CAS  PubMed  Google Scholar 

  • Nakatani N, Inatani R (1981) Structure of rosmanol, a new antioxidant from rosemary (Rosmarinus officinalis L.). Agric Bio Chem 45:2385–2386

    Article  CAS  Google Scholar 

  • Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Pinnell SR (2003) Cutaneousphotodamage, oxidative stress, and topical antioxidant protection. J Am Acad Dermatol 48:1–19

    Article  PubMed  Google Scholar 

  • Sumiyoshi M, Kimura Y (2009) Effects of turmeric extract (Curcuma longa) on chronic ultraviolet B irradiation—induced skin damage in melanin-possessing hairless mice. Phytomedicine 16:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Takao T, Watanabe N, Yagi I, Sakata K (1994) A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteriafrom fish and shellfish. Biosci Biotech Biochem 58:1780–1783

    Article  CAS  Google Scholar 

  • Troncoso N, Sierra H, Carvajal L, Delpiano P, Günther G (2005) Fast high performance liquid chromatography and ultraviolet–visible quantification of principal phenolic antioxidants in fresh rosemary. J Chromatogr A 1100:20–25

    Article  CAS  PubMed  Google Scholar 

  • Tsai JC, Huang GJ, Chiu TH, Huang SS, Huang SC, Huang TH, Lai SC, Lee CY (2011) Antioxidant activities of phenolic components from various plants of Desmodiumspecie. Afr J Pharm Pharmacol 5:468–476

    Article  CAS  Google Scholar 

  • Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258:141–151

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka T, Sternberg BF, Lorence AT (1994) Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitantriester (Span 85). Int J Pharm 105:105–106

    Article  Google Scholar 

  • Zhang PJ, Wei WH, Zhou Y, Li YQ, Wu XA (2012) Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: a comparative study. Arch Pharm Res 35:109–117

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Associate Professor Dr. Anka Klingner, Physics Department, Faculty of Basic Science, German University in Cairo, Al-Tagmoa Al-Khames, New Cairo, Egypt for assistance with the AFM measurements. The authors would also like to thank Prof. Dr. Wafaa Amer,Botany Department, Faculty of Science, Cairo University, Egypt for authentication of the plant material. The authors are also grateful to Prof. Dr. Hesham El-Askary, Pharmacognosy Department, Faculty of Pharmacy, Cairo University for performing the HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahira M. Ezzat.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzat, S.M., Salama, M.M., ElMeshad, A.N. et al. HPLC–DAD–MS/MS profiling of standardized rosemary extract and enhancement of its anti-wrinkle activity by encapsulation in elastic nanovesicles. Arch. Pharm. Res. 39, 912–925 (2016). https://doi.org/10.1007/s12272-016-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0744-6

Keywords

Navigation