Skip to main content
Log in

Promising iron oxide-based magnetic nanoparticles in biomedical engineering

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babes, L., Denizot, B., Amp, X., Tanguy, G., Le Jeune, J. J., and Jallet, P., Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study. J. Colloid Interface Sci., 212, 474–482 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Baker, A. S. J., Brown, A. S. C., Edwards, M. A., Hargreaves, J. S. J., Kiely, C. J., Meagher, A., and Pankhurst, Q. A., A structural study of haematite samples prepared from sulfated goethite precursors: the generation of axial mesoporous voids. J. Mater. Chem., 10, 761–766 (2000).

    Article  CAS  Google Scholar 

  • Bhattarai, S. R., Bahadur K.C, R., Aryal, S., Khil, M. S., and Kim, H. Y., N-Acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydr. Polym., 69, 467–477 (2007).

    Article  CAS  Google Scholar 

  • Bhattarai, S. R., Kc, R. B., Kim, S. Y., Sharma, M., Khil, M. S., Hwang, P. H., Chung, G. H., and Kim, H. Y., N-hexanoyl chitosan stabilized magnetic nanoparticles: Implication for cellular labeling and magnetic resonance imaging. J. Nanobiotechnology, 6, 1 (2008).

    Article  PubMed  Google Scholar 

  • Binder, W. H. and Weinstabl, H. C., Surface-modified superparamagnetic iron-oxide nanoparticles. Chem. Mat. Sci., 138, 315–320 (2007).

    CAS  Google Scholar 

  • Butter, K., Kassapidou, K., Vroege, G. J., and Philipse, A. P., Preparation and properties of colloidal iron dispersions. J. Colloid Interface Sci., 287, 485–95 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Carmen Bautista, M., Bomati-Miguel, O., Del Puerto Morales, M., Serna, C. J., and Veintemillas-Verdaguer, S., Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater., 293, 20–27 (2005).

    Article  Google Scholar 

  • Chastellain, M., Petri, A., and Hofmann, H., Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J. Colloid Interface Sci., 278, 353–360 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Jiang, X., Kaneti, Y. V., and Yu, A., Design and construction of polymerized-glucose coated Fe3O4 magnetic nanoparticles for delivery of aspirin. Powder Technol., DOI10.1016/j.powtec.2012.03.008 (2012).

  • Chen, J., Wu, H., Han, D., and Xie, C., Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett., 231, 169–175 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Cherukuri, P., Glazer, E. S., and Curley, S. A., Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev., 62, 339–345 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., and Hubalek, J., Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 62, 144–149 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Colombo, M., Corsi, F., Foschi, D., Mazzantini, E., Mazzucchelli, S., Morasso, C., Occhipinti, E., Polito, L., Prosperi, D., Ronchi, S., and Verderio, P., HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacol. Res., 62, 150–165 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Cornell, R. M. and Schwertmann, U., The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses, VCH Verlagsgesellschaft Weinheim (1996).

  • Corr, S. A., Byrne, S. J., Tekoriute, R., Meledandri, C. J., Brougham, D. F., Lynch, M., Kerskens, C., O’dwyer, L., and Gun’ko, Y. K., Linear assemblies of magnetic nanoparticles as MRI contrast agents. J. Am. Chem. Soc., 130, 4214–4215 (2008).

    Article  PubMed  CAS  Google Scholar 

  • David, R., Groebner, M., and Franz, W.-M., Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells, 23, 477–482 (2005).

    Article  PubMed  CAS  Google Scholar 

  • De Dios, A. S. and Diaz-Garcia, M. E., Multifunctional nanoparticles: analytical prospects. Anal. Chim. Acta, 666, 1–22 (2010).

    Article  PubMed  Google Scholar 

  • De Hąn, C., Conception of the first magnetic resonance imaging contrast agents: a brief history. Top. Magn. Reson. Imaging, 12, 221–230 (2001).

    Article  Google Scholar 

  • De, M., Ghosh, P. S., and Rotello, V. M., Applications of nanoparticles in biology. Adv. Mater., 20, 4225–4241 (2008).

    Article  CAS  Google Scholar 

  • Dilnawaz, F., Singh, A., Mohanty, C., and Sahoo, S. K., Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 31, 3694–3706 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Domingo, C., RodríGuez-Clemente, R., and Blesa, M., Morphological properties of α-FeOOH, γ-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe(II) solutions. J. Colloid Interface Sci., 165, 244–252 (1994).

    Article  CAS  Google Scholar 

  • Frank, J. A., Zywicke, H., Jordan, E. K., Mitchell, J., Lewis, B. K., Miller, B., Bryant, L. H., Jr., and Bulte, J. W., Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad. Radiol., 9Suppl 2, S484–S487 (2002).

    Article  PubMed  Google Scholar 

  • Gao, J., Gu, H., and Xu, B., Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res., 42, 1097–1107 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Ge, S., Shi, X., Sun, K., Li, C., Baker, J. R., Banaszak Holl, M. M., and Orr, B. G., A facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J. Phys. Chem. C Nanomater. Interfaces., 113, 13593–13599 (2009).

    PubMed  CAS  Google Scholar 

  • Gupta, A. K. and Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A. K. and Wells, S., Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobioscience, 3, 66–73 (2004).

    Article  PubMed  Google Scholar 

  • Gupta, R. and Chaudhury, N., Entrapment of biomolecules in solgel matrix for applications in biosensors: problems and future prospects. Biosens. Bioelectron., 22, 2387–2399 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Haddad, P. S., Martins, T. M., D’souza-Li, L., Li, L. M., Metze, K., Adam, R. L., Knobel, M., and Zanchet, D., Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications. Mater. Sci. Eng. C, 28, 489–494 (2008).

    Article  CAS  Google Scholar 

  • Hadjipanayis, C. G., Machaidze, R., Kaluzova, M., Wang, L., Schuette, A. J., Chen, H., Wu, X., and Mao, H., EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res., 70, 6303–6312 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Hamoudeh, M., Al Faraj, A., Canet-Soulas, E., Bessueille, F., Leonard, D., and Fessi, H., Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm., 338, 248–257 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Herrera, A. P., Barrera, C., Zayas, Y., and Rinaldi, C., Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements. J. Colloid Interface Sci., 342, 540–549 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Hohnholt, M. C., Geppert, M., and Dringen, R., Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater., 7, 3946–3954 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chem. Commun. (Camb.), 927–934 (2003).

  • Hyeon, T., Lee, S. S., Park, J., Chung, Y., and Na, H. B., Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 123, 12798–12801 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ito, A., Shinkai, M., Honda, H., and Kobayashi, T., Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 100, 1–11 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L., and Labhasetwar, V., Iron oxide oanoparticles for sustained delivery of anticancer agents. Mol. Pharm., 2, 194–205 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Jain, T. K., Richey, J., Strand, M., Leslie-Pelecky, D. L., Flask, C. A., and Labhasetwar, V., Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials, 29, 4012–4021 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Jarzyna, P. A., Skajaa, T., Gianella, A., Cormode, D. P., Samber, D. D., Dickson, S. D., Chen, W., Griffioen, A. W., Fayad, Z. A., and Mulder, W. J., Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials, 30, 6947–6954 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Johannsen, M., Gneveckow, U., Thiesen, B., Taymoorian, K., Cho, C. H., Waldöfner, N., Scholz, R., Jordan, A., Loening, S. A., and Wust, P., Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-Dimensional temperature distribution. Eur. Urol., 52, 1653–1662 (2007).

    Article  PubMed  Google Scholar 

  • Jolivet, J. P., Belleville, P., Tronc, E., and Livage, J., Influence of Fe(II) on the formation of the spinel iron oxide in alkaline medium. Clays Clay Miner., 40, 531–539 (1992).

    Article  CAS  Google Scholar 

  • Ke, J. H., Lin, J. J., Carey, J. R., Chen, J. S., Chen, C. Y., and Wang, L. F., A specific tumor-targeting magnetofluorescent nanoprobe for dual-modality molecular imaging. Biomaterials, 31, 1707–1715 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Khan, A., Preparation and characterization of magnetic nanoparticles embedded in microgels. Mater. Lett., 62, 898–902 (2008).

    Article  CAS  Google Scholar 

  • Kim, D. H., Kim, K. N., Kim, K. M., and Lee, Y. K., Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J. Biomed. Mater. Res., A, 88, 1–11 (2009).

    Google Scholar 

  • Kim, E. H., Lee, H. S., Kwak, B. K., and Kim, B. K., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater., 289, 328–330 (2005).

    Article  CAS  Google Scholar 

  • Kirsch, J. E., Basic principles of magnetic resonance contrast agents. Top. Magn. Reson. Imaging, 3, 1–18 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Kumagai, M., Imai, Y., Nakamura, T., Yamasaki, Y., Sekino, M., Ueno, S., Hanaoka, K., Kikuchi, K., Nagano, T., Kaneko, E., Shimokado, K., and Kataoka, K., Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surf. B Biointerfaces, 56, 174–181 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Kumagai, M., Kano, M. R., Morishita, Y., Ota, M., Imai, Y., Nishiyama, N., Sekino, M., Ueno, S., Miyazono, K., and Kataoka, K., Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymercoated magnetite nanoparticles with TGF-beta inhibitor. J. Control. Release, 140, 306–311 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R. N., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochem ical characterizations, and biological applications. Chem. Rev., 108, 2064–2110 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Isobe, T., and Senna, M., Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci., 177, 490–494 (1996).

    Article  CAS  Google Scholar 

  • Li, F., Sun, J., Zhu, H., Wen, X., Lin, C., and Shi, D., Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf. B Biointerfaces, 88, 58–62 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Liao, M. -H. and Chen, D.-H., Preparation and characterization of a novel magnetic nano-adsorbent. J. Mater. Chem., 12, 3654–3659 (2002).

    Article  CAS  Google Scholar 

  • Liu, C., Wu, X., Klemmer, T., Shukla, N., Weller, D., Reduction of sintering during annealing of FePt nanoparticles coated with iron oxide. Chem. Mater., 17, 620–625 (2005).

    Article  CAS  Google Scholar 

  • Lu, A. H., Salabas, E. L., and Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 46, 1222–1244 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Yin, Y., Mayers, B. T., and Xia, Y., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through A solgel approach. Nano Lett., 2, 183–186 (2002).

    Article  CAS  Google Scholar 

  • Lübbe, A. S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J. W., and Huhn, D., Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res., 56, 4694–4701 (1996).

    PubMed  Google Scholar 

  • Maeng, J. H., Lee, D. H., Jung, K. H., Bae, Y. H., Park, I. S., Jeong, S., Jeon, Y. S., Shim, C. K., Kim, W., Kim, J., Lee, J., Lee, Y. M., Kim, J. H., Kim, W. H., and Hong, S. S., Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 31, 4995–5006 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., and Jordan, A., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 103, 317–324 (2011).

    Article  PubMed  Google Scholar 

  • Maury, P. A., Reinhoudt, D. N., and Huskens, J., Assembly of nanoparticles on patterned surfaces by noncovalent interaction. Curr. Opin. Colloid Interface Sci., 13, 74–80 (2007).

    Article  Google Scholar 

  • Melo, T. F. O., Da Silva, S. W., Soler, M. a. G., Lima, E. C. D., and Morais, P. C., Investigation of surface passivation process on magnetic nanoparticles by Raman spectroscopy. Surf. Sci., 600, 3642–3645 (2006).

    Article  CAS  Google Scholar 

  • Meng, J., Fan, J., Galiana, G., Branca, R. T., Clasen, P. L., Ma, S., Zhou, J., Leuschner, C., Kumar, C. S. S. R., Hormes, J., Otiti, T., Beye, A. C., Harmer, M. P., Kiely, C. J., Warren, W., Haataja, M. P., and Soboyejo, W. O., LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mater. Sci. Eng. C, 29, 1467–1479 (2009).

    Article  CAS  Google Scholar 

  • Mikhaylova, M., Kim, D. K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalakos, T., and Muhammed, M., Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir, 20, 2472–2477 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Minges Wols, H. A., and Witte, P. L., Plasma cell purification from murine bone marrow using a two-step isolation approach. J. Immunol. Methods, 329, 219–224 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra, M. and Anand, S., Synthesis and applications of nano-structured iron oxides/hydroxides — a review. Int. J. Eng. Sci. Technol., 2, 127–146 (2010).

    Google Scholar 

  • Morais, P. C., Santos, R. L., Pimenta, A. C. M., Azevedo, R. B., and Lima, E. C. D., Preparation and characterization of ultra-stable biocompatible magnetic fluids using citratecoated cobalt ferrite nanoparticles. Thin Solid Films, 515, 266–270 (2006).

    Article  CAS  Google Scholar 

  • Mornet, S., Portier, J., and Duguet, E., A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater., 293, 127–134 (2005).

    Article  CAS  Google Scholar 

  • Munnier, E., Cohen-Jonathan, S., Linassier, C., Douziech-Eyrolles, L., Marchais, H., Souce, M., Herve, K., Dubois, P., and Chourpa, I., Novel method of doxorubicin-SPION reversible association for magnetic drug targeting. Int. J. Pharm., 363, 170–176 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Omer, M., Haider, S., and Park, S.-Y., A novel route for the preparation of thermally sensitive core-shell magnetic nanoparticles. Polymer, 52, 91–97 (2011).

    Article  CAS  Google Scholar 

  • Pantic, I., Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches. Rev. Adv. Mater. Sci., 26, 67–73 (2010).

    CAS  Google Scholar 

  • Park, J., An, K., Hwang, Y., Park, J. G., Noh, H. J., Kim, J. Y., Park, J. H., Hwang, N. M., and Hyeon, T., Ultra-largescale syntheses of monodisperse nanocrystals. Nat. Mater., 3, 891–895 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Parveen, S., Misra, R., and Sahoo, S. K., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 8, 147–166 (2012).

    PubMed  CAS  Google Scholar 

  • Pascal, C., Pascal, J. L., Favier, F., Elidrissi Moubtassim, M. L., and Payen, C., Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater., 11, 141–147 (1998).

    Article  Google Scholar 

  • Paul, B. K. and Moulik, S. P., Uses and applications of microemulsions. Curr. Sci., 80, 990–1001 (2001).

    CAS  Google Scholar 

  • Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., and Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nano, 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  • Piao, Y., Kim, J., Na, H. B., Kim, D., Baek, J. S., Ko, M. K., Lee, J. H., Shokouhimehr, M., and Hyeon, T., Wrap-bakepeel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat. Mater., 7, 242–247 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Prabha, S., Zhou, W. Z., Panyam, J., and Labhasetwar, V., Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm., 244, 105–115 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Qiao, T., Wu, Y., Jin, J., Gao, W., Xie, Q., Wang, S., Zhang, Y., and Deng, H., Conjugation of catecholamines on magnetic nanoparticles coated with sulfonated chitosan. Colloids Surf. A Physicochem. Eng. Asp., 380, 169–174 (2011).

    Article  CAS  Google Scholar 

  • Rahimi, M., Wadajkar, A., Subramanian, K., Yousef, M., Cui, W., Hsieh, J. T., and Nguyen, K. T., In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine, 6, 672–680 (2010).

    PubMed  CAS  Google Scholar 

  • Rühle, M. and Ernst, F., High-resolution imaging and spectrometry of materials, Springer (2003).

  • Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., and Tan, W., Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir, 17, 2900–2906 (2001).

    Article  CAS  Google Scholar 

  • Sanvicens, N. and Marco, M. P., Multifunctional nanoparticles — properties and prospects for their use in human medicine. Trends Biotechnol., 26, 425–433 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Schweiger, C., Pietzonka, C., Heverhagen, J., and Kissel, T., Novel magnetic iron oxide nanoparticles coated with poly (ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int. J. Pharm., 408, 130–137 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Small, A. C. and Johnston, J. H., Novel hybrid materials of magnetic nanoparticles and cellulose fibers. J. Colloid Interface Sci., 331, 122–126 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Stöber, W., Fink, A., and Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 26, 62–69 (1968).

    Article  Google Scholar 

  • Sugimoto, T. and Sakata, K., Preparation of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interface Sci., 152, 587–590 (1992).

    Article  CAS  Google Scholar 

  • Sun, C., Lee, J. S., and Zhang, M., Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv. Rev, 60, 1252–1265 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 1989–1992 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Sun, S. and Zeng, H., Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 124, 8204–8205 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126, 273–279 (2003).

    Article  Google Scholar 

  • Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., and Serna, C. J., Synthesis, properties and biomedical applications of magnetic nanoparticles, Amsterdam, The Netherlands, Elsevier (2006).

    Google Scholar 

  • Thoeny, H. C., Triantafyllou, M., Birkhaeuser, F. D., Froehlich, J. M., Tshering, D. W., Binser, T., Fleischmann, A., Vermathen, P., and Studer, U. E., Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol., 55, 761–769 (2009).

    Article  PubMed  Google Scholar 

  • Vogt, C., Toprak, M., Muhammed, M., Laurent, S., Bridot, J.-L., and Müller, R., High quality and tuneable silica shell-magnetic core nanoparticles. J. Nano. Res., 12, 1137–1147 (2010).

    Article  CAS  Google Scholar 

  • Vonarbourg, A., Passirani, C., Saulnier, P., and Benoit, J. P., Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 27, 4356–4373 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Sun, J., Sun, Q., and Chen, Q., One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull., 38, 1113–1118 (2003).

    Article  CAS  Google Scholar 

  • Wang, S., Jarrett, B. R., Kauzlarich, S. M., and Louie, A. Y., Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J. Am. Chem. Soc., 129, 3848–3856 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., and Josephson, L., Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol., 23, 1418–1423 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Willard, M. A., Kurihara, L. K. C., E. E., Calvin, S., and Harris, V. G., Encyclopedia of Nanoscience and Nanotechnology, CA, Valencia (2004).

  • Willis, A. L., Turro, N. J., and O’brien, S., Spectroscopic characterization of the surface of iron oxide nanocrystals, Washington, DC, ETATS-UNIS, American Chemical Society (2005).

    Google Scholar 

  • Xu, Z. Z., Wang, C. C., Yang, W. L., Deng, Y. H., and Fu, S. K., Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. J. Magn. Magn. Mater., 277, 136–143 (2004).

    Article  CAS  Google Scholar 

  • Yan, X., Scherphof, G. L., and Kamps, J. A., Liposome opsonization. J. Liposome Res., 15, 109–139 (2005).

    PubMed  CAS  Google Scholar 

  • Yokoyama, T., Tam, J., Kuroda, S., Scott, A. W., Aaron, J., Larson, T., Shanker, M., Correa, A. M., Kondo, S., Roth, J. A., Sokolov, K., and Ramesh, R., EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS One, 6, e25507 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Yuan, C. and Kerwin, W. S., MRI of atherosclerosis. J. Magn. Reson. Imaging, 19, 710–719 (2004).

    Article  PubMed  Google Scholar 

  • Yuan, W., Yuan, J., Zhou, L., Wu, S., and Hong, X., Fe3O4 @poly(2-hydroxyethyl methacrylate)-graft-poly(ɛ-caprolactone) magnetic nanoparticles with branched brush polymeric shell. Polymer, 51, 2540–2547 (2010).

    Article  CAS  Google Scholar 

  • Zhang, L. -Y., Zhu, X.-J., Sun, H.-W., Chi, G.-R., Xu, J.-X., and Sun, Y.-L. Control synthesis of magnetic Fe3O4-chitosan nanoparticles under UV irradiation in aqueous system. Curr. Appl. Phys., 10, 828–833 (2010).

    Article  Google Scholar 

  • Zhang, Y., Wang, H., Yan, B., Zhang, Y., Li, J., Shen, G., and Yu, R., A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite. J. Immunol. Methods, 332, 103–111 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Qiu, Z., Huang, J., Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chinese J. Chem. Eng., 16, 451–455 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thao Truong-Dinh Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, P.HL., Tran, T.TD., Vo, T.V. et al. Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch. Pharm. Res. 35, 2045–2061 (2012). https://doi.org/10.1007/s12272-012-1203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-1203-7

Key words

Navigation