Skip to main content
Log in

Attenuation of scopolamine-induced cognitive dysfunction by obovatol

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most prevalent cause of dementia in the elderly people. The disease is pathologically characterized by extracellular deposition of beta-amyloid peptide (Aβ), cholinergic neurodegeneration and elevation of acetylcholine esterase (AChE) activity in the affected regions. In this study, we investigated the effects of obovatol on memory dysfunction, which was caused by scopolamine. Obovatol (0.2, 0.5 and 1 mg/kg for 7 day) attenuated scopolamine (1 mg/kg, i.p.)-induced amnesia in a dose-dependent manner, as revealed by the Morris water maze test and step-through passive avoidance test. Mechanism studies exhibited that obovatol dose-dependently alleviated scopolamine-induced increase in Aβ generation and β-secretase activity in the cortex and hippocampus. Obovatol also attenuated scopolamine-induced rise in AChE activity in the cortex and hippocampus. Obovatol might rescue scopolamine-mediated impaired learning and memory function by attenuating Aβ accumulation and stabilizing cholinergic neurotransmission, which suggests that the natural compound could be a useful agent for the prevention of the development or progression of AD neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, T. and Gilani, A. H., Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol. Biochem. Behav., 91, 554–559 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Auld, D. S., Kornecook, T. J., Bastianetto, S., and Quirion, R., Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol., 68, 209–245 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J. A., Ray, B., Greig, N. H., and Lahiri, D. K., Rivastigmine lowers Abeta and increases sAPPalpha levels, which parallel elevated synaptic markers and metabolic activity in degenerating primary rat neurons. PLoS One, 6, e21954 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Beatty, W. W., Butters, N., and Janowsky, D. S., Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav. Neural Biol., 45, 196–211 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. Y., Lee, J. W., Lin, G., Lee, Y. J., Ban, J. O., Lee, Y. H., Choi, I. S., Han, S. B., Jung, J. K., Lee, W. S., Lee, S. H., Kwon, B. M., Oh, K. W., and Hong, J. T., Obovatol improves cognitive functions in animal models for Alzheimer’s disease. J. Neurochem., 120, 1048–1059 (2012a).

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. Y., Lee, J. W., Lin, G., Lee, Y. K., Lee, Y. H., Choi, I. S., Han, S. B., Jung, J. K., Kim, Y. H., Kim, K. H., Oh, K. W., Hong, J. T., and Lee, M. S., Obovatol attenuates LPSinduced memory impairments in mice via inhibition of NF-kappaB signaling pathway. Neurochem. Int., 60, 68–77 (2012b).

    Article  PubMed  CAS  Google Scholar 

  • Cole, S. L. and Vassar, R., The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J. Biol. Chem., 283, 29621–29625 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Feather-Stone, R. M., A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88–95 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Ensinger, H. A., Doods, H. N., Immel-Sehr, A. R., Kuhn, F. J., Lambrecht, G., Mendla, K. D., Muller, R. E., Mutschler, E., Sagrada, A., Walther, G., and Hammer, R., WAL 2014—a muscarinic agonist with preferential neuron-stimulating properties. Life Sci., 52, 473–480 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Glabe, C. G., Structural classification of toxic amyloid oligomers. J. Biol. Chem., 283, 29639–29643 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Ho, K. Y., Tsai, C. C., Chen, C. P., Huang, J. S., and Lin, C. C., Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother. Res., 15, 139–141 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hock, C., Maddalena, A., Heuser, I., Naber, D., Oertel, W., Von Der Kammer, H., Wienrich, M., Raschig, A., Deng, M., Growdon, J. H., and Nitsch, R. M., Treatment with the selective muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of total amyloid beta-peptide in patients with Alzheimer’s disease. Ann. N. Y. Acad. Sci., 920, 285–291 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Huber, K. and Superti-Furga, G., After the grape rush: sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorg. Med. Chem., 19, 3616–3624 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Kaduszkiewicz, H., Zimmermann, T., Beck-Bornholdt, H. P., and Van Den Bussche, H., Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ, 331, 321–327 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kwon, S. H., Lee, H. K., Kim, J. A., Hong, S. I., Kim, H. C., Jo, T. H., Park, Y. I., Lee, C. K., Kim, Y. B., Lee, S. Y., and Jang, C. G., Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol., 649, 210–217 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lee, B., Shim, I., Lee, H., and Hahm, D. H., Rehmannia glutinosa ameliorates scopolamine-induced learning and memory impairment in rats. J. Microbiol. Biotechnol., 21, 874–883 (2011).

    Article  PubMed  Google Scholar 

  • Lee, S. K., Kim, H. N., Kang, Y. R., Lee, C. W., Kim, H. M., Han, D. C., Shin, J., Bae, K., and Kwon, B. M., Obovatol inhibits colorectal cancer growth by inhibiting tumor cell proliferation and inducing apoptosis. Bioorg. Med. Chem., 16, 8397–8402 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. K., Choi, I. S., Kim, Y. H., Kim, K. H., Nam, S. Y., Yun, Y. W., Lee, M. S., Oh, K. W., and Hong, J. T., Neurite outgrowth effect of 4-O-methylhonokiol by induction of neurotrophic factors through ERK activation. Neurochem. Res., 34, 2251–2260 (2009a).

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. K., Yuk, D. Y., Kim, T. I., Kim, Y. H., Kim, K. T., Kim, K. H., Lee, B. J., Nam, S. Y., and Hong, J. T., Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J. Nat. Med., 63, 274–282 (2009b).

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. K., Song, J. K., Choi, I. S., Jeong, J. H., Moon, D. C., Yun, Y. P., Han, S. B., Oh, K. W., and Hong, J. T., Neurotrophic activity of obovatol on the cultured embryonic rat neuronal cells by increase of neurotrophin release through activation of ERK pathway. Eur. J. Pharmacol., 649, 168–176 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lin, L., Leblanc, C. J., Deacon, T. W., and Isacson, O., Chronic cognitive deficits and amyloid precursor protein elevation after selective immunotoxin lesions of the basal forebrain cholinergic system. Neuroreport, 9, 547–552 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Liskowsky, W. and Schliebs, R., Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int. J. Dev. Neurosci., 24, 149–156 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Matsui, N., Takahashi, K., Takeichi, M., Kuroshita, T., Noguchi, K., Yamazaki, K., Tagashira, H., Tsutsui, K., Okada, H., Kido, Y., Yasui, Y., Fukuishi, N., Fukuyama, Y., and Akagi, M., Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice. Brain Res., 1305, 108–117 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Messamore, E., Warpman, U., Ogane, N., and Giacobini, E., Cholinesterase inhibitor effects on extracellular acetylcholine in rat cortex. Neuropharmacology, 32, 745–750 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Muller, D. M., Mendla, K., Farber, S. A., and Nitsch, R. M., Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci., 60, 985–991 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Nitsch, R. M., Deng, M., Tennis, M., Schoenfeld, D., and Growdon, J. H., The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol., 48, 913–918 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Nitsch, R. M., Slack, B. E., Wurtman, R. J., and Growdon, J. H., Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science, 258, 304–307 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Nordberg, A. and Svensson, A. L., Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf., 19, 465–480 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ock, J., Han, H. S., Hong, S. H., Lee, S. Y., Han, Y. M., Kwon, B. M., and Suk, K., Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br. J. Pharmacol., 159, 1646–1662 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Park, S. J., Kim, D. H., Jung, J. M., Kim, J. M., Cai, M., Liu, X., Hong, J. G., Lee, C. H., Lee, K. R., and Ryu, J. H., The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur. J. Pharmacol., 676, 64–70 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Petersen, R. C., Scopolamine induced learning failures in man. Psychopharmacology (Berl.), 52, 283–289 (1977).

    Article  CAS  Google Scholar 

  • Preston, G. C., Brazell, C., Ward, C., Broks, P., Traub, M., and Stahl, S. M., The scopolamine model of dementia: determination of central cholinomimetic effects of physostigmine on cognition and biochemical markers in man. J. Psychopharmacol., 2, 67–79 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Seo, J. J., Lee, S. H., Lee, Y. S., Kwon, B. M., Ma, Y., Hwang, B. Y., Hong, J. T., and Oh, K. W., Anxiolytic-like effects of obovatol isolated from Magnolia obovata: involvement of GABA/benzodiazepine receptors complex. Prog. Neuropsychopharmacol. Biol. Psychiatry, 31, 1363–1369 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Uriarte-Pueyo, I. and Calvo, M. I., Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem., 18, 5289–5302 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Weinreb, O., Amit, T., Mandel, S., and Youdim, M. B., Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr., DOI 10.1007/s12263-009-0143-4 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tae Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, DY., Lee, YJ., Lee, S.Y. et al. Attenuation of scopolamine-induced cognitive dysfunction by obovatol. Arch. Pharm. Res. 35, 1279–1286 (2012). https://doi.org/10.1007/s12272-012-0719-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0719-1

Key words

Navigation