Skip to main content
Log in

Ubiquitin-Ligasen: heiße Targets für die Wirkstoffentwicklung?

  • Wissenschaft
  • Strukturbiologie
  • Published:
BIOspektrum Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ubiquitin regulates countless physiological and pathophysiological processes and, as a result, ubiquitination enzymes have emerged as key targets on the drug discovery arena. Here we discuss recent progress in the development of small-molecule inhibitors directed at ubiquitin ligases and highlight novel strategies that may pave the way for rational drug design approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Ito T, Ando H, Suzuki T et al. (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  CAS  PubMed  Google Scholar 

  2. Fischer ES, Böhm K, Lydeard JR et al. (2014) Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:49–53

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu G, Middleton RE, Sun H et al. (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krönke J, Udeshi ND, Narla A et al. (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301–305

    Article  PubMed  PubMed Central  Google Scholar 

  5. Winter GE, Buckley DL, Paulk J et al. (2015) Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–1381

    CAS  PubMed  Google Scholar 

  6. Lorenz S, Cantor AJ, Rape M et al. (2012) Macromolecular juggling by ubiquitylation enzymes. BMC Biology 11:65–65

    Article  Google Scholar 

  7. Kamadurai HB, Qiu Y, Deng A et al. (2013) Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2:e00828

    Article  Google Scholar 

  8. Brown NG, VanderLinden R, Watson ER et al. (2015) RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Proc Natl Acad Sci USA 112:5272–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang L, Zhang Z, Yang J et al. (2015) Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature 522:450–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wickliffe KE, Lorenz S, Wemmer DE et al. (2011) The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lorenz S, Bhattacharyya M, Feiler C et al. (2016) Crystal structure of a Ube2S-ubiquitin conjugate. PLoS One 11:e0147550

    Google Scholar 

  12. Lorenz S, Deng P, Hantschel O et al. (2015) Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity. Biochem J 468:283–291

    Article  CAS  PubMed  Google Scholar 

  13. Plechanovová A, Jaffray EG, Tatham MH et al. (2012) Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489:115–120

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kamadurai HB, Souphron J, Scott DC et al. (2009) Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol Cell 36:1095–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lechtenberg BC, Rajput A, Sanishvili R et al. (2016) Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529:546–550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Lorenz.

Additional information

Lena Ries 20082013 Biochemiestudium, Universität Bayreuth. Seit 2014 Promotion bei Dr. S. Lorenz am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Würzburg, gefördert durch ein Kekulé-Stipendium des Fonds der Chemischen Industrie.

Sonja Lorenz 19972003 Biochemiestudium, Universität Regensburg und University of California (UC), Berkeley, USA. 20042008 Promotion bei Prof. Dr. I. Campbell und Prof. Dr. M. Noble, University of Oxford, UK. 20082013 Postdoc bei Prof. Dr. J. Kuriyan, UC Berkeley, USA. Seit 2014 Arbeitsgruppenleiterin am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Würzburg, gefördert durch das Emmy Noether-Programm der DFG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ries, L., Lorenz, S. Ubiquitin-Ligasen: heiße Targets für die Wirkstoffentwicklung?. Biospektrum 22, 244–246 (2016). https://doi.org/10.1007/s12268-016-0679-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-016-0679-y

Navigation