Skip to main content

Advertisement

Log in

Integrating GRK2 and NFkappaB in the Pathophysiology of Cardiac Hypertrophy

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

G protein coupled receptor kinase type 2 (GRK2) plays an important role in the development and maintenance of cardiac hypertrophy and heart failure even if its exact role is still unknown. In this study, we assessed the effect of GRK2 on the regulation of cardiac hypertrophy. In H9C2 cells, GRK2 overexpression increased atrial natriuretic factor (ANF) activity and enhanced phenylephrine-induced ANF response, and this is associated with an increase of NFκB transcriptional activity. The kinase dead mutant and a synthetic inhibitor of GRK2 activity exerted the opposite effect, suggesting that GRK2 regulates hypertrophy through upregulation of NFκB activity in a phosphorylation-dependent manner. In two different in vivo models of left ventricle hypertrophy (LVH), the selective inhibition of GRK2 activity prevented hypertrophy and reduced NFκB transcription activity. Our results suggest a previously undisclosed role for GRK2 in the regulation of hypertrophic responses and propose GRK2 as potential therapeutic target for limiting LVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferguson, S. S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacological Reviews, 53(1), 1–24 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  2. Choi, D. J., Koch, W. J., Hunter, J. J., & Rockman, H. A. (1997). Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase. Journal of Biological Chemistry, 272(27), 17223–17229 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, K. M., Eckhart, A. D., Willette, R. N., & Koch, W. J. (1999). The myocardial beta-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension, 33(1 Pt 2), 402–407.

    Article  CAS  PubMed  Google Scholar 

  4. Ungerer, M., Bohm, M., Elce, J. S., Erdmann, E., & Lohse, M. J. (1993). Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation, 87(2), 454–463 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  5. Ungerer, M., Parruti, G., Bohm, M., Puzicha, M., DeBlasi, A., Erdmann, E., et al. (1994). Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circulation Research, 74(2), 206–213 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  6. Ping, P., Anzai, T., Gao, M., & Hammond, H. K. (1997). Adenylyl cyclase and G protein receptor kinase expression during development of heart failure. American Journal of Physiology, 273(2 Pt 2), H707–717 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  7. Iaccarino, G., Barbato, E., Cipolletta, E., De Amicis, V., Margulies, K. B., Leosco, D., et al. (2005). Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. European Heart Journal, 26(17), 1752–1758. doi:10.1093/eurheartj/ehi429 [Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  8. Woodall, M. C., Ciccarelli, M., Woodall, B. P., & Koch, W. J. (2014). G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circulation Research, 114(10), 1661–1670. doi:10.1161/CIRCRESAHA.114.300513 [Research Support, N.I.H., Extramural Review].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fusco, A., Santulli, G., Sorriento, D., Cipolletta, E., Garbi, C., Dorn, G. W., 2nd, et al. (2012). Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis. Cellular Signalling, 24(2), 468–475. doi:10.1016/j.cellsig.2011.09.026 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sorriento, D., Fusco, A., Ciccarelli, M., Rungi, A., Anastasio, A., Carillo, A., et al. (2013). Mitochondrial G protein coupled receptor kinase 2 regulates proinflammatory responses in macrophages. FEBS Letters, 587(21), 3487–3494. doi:10.1016/j.febslet.2013.09.002 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Raake, P. W., Zhang, X., Vinge, L. E., Brinks, H., Gao, E., Jaleel, N., et al. (2012). Cardiac G-protein-coupled receptor kinase 2 ablation induces a novel Ca2+ handling phenotype resistant to adverse alterations and remodeling after myocardial infarction. Circulation, 125(17), 2108–2118. doi:10.1161/CIRCULATIONAHA.111.044255 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Raake, P. W., Vinge, L. E., Gao, E., Boucher, M., Rengo, G., Chen, X., et al. (2008). G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circulation Research, 103(4), 413–422. doi:10.1161/CIRCRESAHA.107.168336 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Matkovich, S. J., Diwan, A., Klanke, J. L., Hammer, D. J., Marreez, Y., Odley, A. M., et al. (2006). Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and beta-adrenergic signaling. Circulation Research, 99(9), 996–1003. doi:10.1161/01.RES.0000247932.71270.2c [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  Google Scholar 

  14. Molkentin, J. D. (2000). Calcineurin and beyond: cardiac hypertrophic signaling. Circulation Research, 87(9), 731–738 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  CAS  PubMed  Google Scholar 

  15. Kuo, C. T., Morrisey, E. E., Anandappa, R., Sigrist, K., Lu, M. M., Parmacek, M. S., et al. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes and Development, 11(8), 1048–1060 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  16. Molkentin, J. D. (2004). Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular Research, 63(3), 467–475. doi:10.1016/j.cardiores.2004.01.021 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  CAS  PubMed  Google Scholar 

  17. Molkentin, J. D., & Markham, B. E. (1993). Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. Journal of Biological Chemistry, 268(26), 19512–19520 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  18. Pikkarainen, S., Tokola, H., Majalahti-Palviainen, T., Kerkela, R., Hautala, N., Bhalla, S. S., et al. (2003). GATA-4 is a nuclear mediator of mechanical stretch-activated hypertrophic program. Journal of Biological Chemistry, 278(26), 23807–23816. doi:10.1074/jbc.M302719200 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  19. Purcell, N. H., Tang, G., Yu, C., Mercurio, F., DiDonato, J. A., & Lin, A. (2001). Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6668–6673. doi:10.1073/pnas.111155798 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hirotani, S., Otsu, K., Nishida, K., Higuchi, Y., Morita, T., Nakayama, H., et al. (2002). Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation, 105(4), 509–515 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  21. Kawamura, N., Kubota, T., Kawano, S., Monden, Y., Feldman, A. M., Tsutsui, H., et al. (2005). Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovascular Research, 66(3), 520–529. doi:10.1016/j.cardiores.2005.02.007 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  22. Aikawa, R., Nagai, T., Tanaka, M., Zou, Y., Ishihara, T., Takano, H., et al. (2001). Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochemical and Biophysical Research Communications, 289(4), 901–907. doi:10.1006/bbrc.2001.6068 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  23. Harada, K., Komuro, I., Shiojima, I., Hayashi, D., Kudoh, S., Mizuno, T., et al. (1998). Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation, 97(19), 1952–1959 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  24. Li, Y., Ha, T., Gao, X., Kelley, J., Williams, D. L., Browder, I. W., et al. (2004). NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 287(4), H1712–1720. doi:10.1152/ajpheart.00124.2004 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  25. Sorriento, D., Santulli, G., Fusco, A., Anastasio, A., Trimarco, B., & Iaccarino, G. (2010). Intracardiac injection of AdGRK5-NT reduces left ventricular hypertrophy by inhibiting NF-kappaB-dependent hypertrophic gene expression. Hypertension, 56(4), 696–704. doi:10.1161/HYPERTENSIONAHA.110.155960 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  26. Kawano, S., Kubota, T., Monden, Y., Kawamura, N., Tsutsui, H., Takeshita, A., et al. (2005). Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovascular Research, 67(4), 689–698. doi:10.1016/j.cardiores.2005.04.030 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  27. Jeong, S., & Yoon, M. (2009). Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice. Experimental and Molecular Medicine, 41(6), 397–405. doi:10.3858/emm.2009.41.6.045 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Watkins, S. J., Borthwick, G. M., & Arthur, H. M. (2011). The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cellular and Developmental Biology - Animal, 47(2), 125–131. doi:10.1007/s11626-010-9368-1 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  29. Verma, S. K., Krishnamurthy, P., Barefield, D., Singh, N., Gupta, R., Lambers, E., et al. (2012). Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-kappaB. Circulation, 126(4), 418–429. doi:10.1161/CIRCULATIONAHA.112.112185 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chen, Q. M., Tu, V. C., Wu, Y., & Bahl, J. J. (2000). Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Archives of Biochemistry and Biophysics, 373(1), 242–248. doi:10.1006/abbi.1999.1558 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  31. Sorriento, D., Ciccarelli, M., Santulli, G., Campanile, A., Altobelli, G. G., Cimini, V., et al. (2008). The G-protein-coupled receptor kinase 5 inhibits NFkappaB transcriptional activity by inducing nuclear accumulation of IkappaB alpha. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17818–17823. doi:10.1073/pnas.0804446105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Iaccarino, G., Izzo, R., Trimarco, V., Cipolletta, E., Lanni, F., Sorriento, D., et al. (2006). Beta2-adrenergic receptor polymorphisms and treatment-induced regression of left ventricular hypertrophy in hypertension. Clinical Pharmacology and Therapeutics, 80(6), 633–645. doi:10.1016/j.clpt.2006.09.006 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  33. Sorriento, D., Campanile, A., Santulli, G., Leggiero, E., Pastore, L., Trimarco, B., et al. (2009). A new synthetic protein, TAT-RH, inhibits tumor growth through the regulation of NFkappaB activity. Molecular Cancer, 8, 97. doi:10.1186/1476-4598-8-97.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ciccarelli, M., Chuprun, J. K., Rengo, G., Gao, E., Wei, Z., Peroutka, R. J., et al. (2011). G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation, 123(18), 1953–1962. doi:10.1161/CIRCULATIONAHA.110.988642 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Cipolletta, E., Campanile, A., Santulli, G., Sanzari, E., Leosco, D., Campiglia, P., et al. (2009). The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovascular Research, 84(3), 407–415. doi:10.1093/cvr/cvp252 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  36. Patial, S., Luo, J., Porter, K. J., Benovic, J. L., & Parameswaran, N. (2010). G-protein-coupled-receptor kinases mediate TNFalpha-induced NFkappaB signalling via direct interaction with and phosphorylation of IkappaBalpha. Biochemical Journal, 425(1), 169–178. doi:10.1042/BJ20090908 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  Google Scholar 

  37. Knoll, R., Iaccarino, G., Tarone, G., Hilfiker-Kleiner, D., Bauersachs, J., Leite-Moreira, A. F., et al. (2011). Towards a re-definition of ‘cardiac hypertrophy’ through a rational characterization of left ventricular phenotypes: a position paper of the Working Group ‘Myocardial Function’ of the ESC. European Journal of Heart Failure, 13(8), 811–819. doi:10.1093/eurjhf/hfr071 [Practice Guideline Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  38. Hullmann, J. E., Grisanti, L. A., Makarewich, C. A., Gao, E., Gold, J. I., Chuprun, J. K., et al. (2014). GRK5-Mediated Exacerbation of Pathological Cardiac Hypertrophy Involves Facilitation of Nuclear NFAT Activity. Circulation Research, 115(12), 976–985. doi:10.1161/CIRCRESAHA.116.304475.

    Article  CAS  PubMed  Google Scholar 

  39. Raake, P. W., Schlegel, P., Ksienzyk, J., Reinkober, J., Barthelmes, J., Schinkel, S., et al. (2013). AAV6.betaARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. European Heart Journal, 34(19), 1437–1447. doi:10.1093/eurheartj/ehr447 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lucas, E., Jurado-Pueyo, M., Fortuno, M. A., Fernandez-Veledo, S., Vila-Bedmar, R., Jimenez-Borreguero, L. J., et al. (2014). Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns. Biochimica et Biophysica Acta, 1842(12 Pt A), 2448–2456. doi:10.1016/j.bbadis.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests to disclose.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants performed by any of the authors. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by “Federico II” University Ethical committee. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Source of Funding

Progetti di rilevante interesse nazionale (PRIN)-Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) 2009 (prot. 2009EL5WBP_001), “Società italiana di ipertensione arteriosa” (SIIA) 2012 (prot. and “Fondo di Ateneo per la ricerca di base” (FARB) 2011 (prot. 300397FRB14IACCA) to G.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Iaccarino.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34 kb)

Supplementary Figure 1

Effects of GRK2 on the regulation of BNP gene expression. Gene expression of BNP, a marker of hypertrophy together with ANF, was evaluated by real time PCR. GRK2 overexpression increased BNP gene expression and enhanced the response to PE. The overexpression of GRK2-DN inhibited BNP gene expression both basally and in response to PE (* p < 0.05 vs CTRL; # p < 0.05 vs PE). (JPEG 584 kb)

Supplementary Figure 2

Effects of GRK2 on angiotensin II-induced hypertrophy in vitro. To evaluate whether GRK2 inhibition was effective also in response to other hypertrophic stimuli, besides alpha-adrenergic activation, we performed a real time PCR to evaluate ANF gene expression in response to angiotensin II. The overexpression of GRK2 increased ANF gene expression and enhanced the response to angiotensin II. On the contrary, the overexpression of GRK2-DN inhibited ANF gene expression both basally and in response to angiotensin II (* p < 0.05 vs CTRL; # p < 0.05 vs angiotensin II). (JPEG 751 kb)

Supplementary Figure 3

Echocardiographic analysis of SHR rats. We report m-mode echo representative images of WKY, SHR and treated SHR groups. Y axis represents the depth (mm) and X-axis represents time (ms). (JPEG 1720 kb)

Supplementary Figure 4

Echocardiographic analysis of WKY rats. We report m-mode echo representative images of WKY, WKY treated with PE and WKY treated with PE and Ant-124. Y axis represents the depth (mm) and X-axis represents time (ms). (JPEG 3758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorriento, D., Santulli, G., Franco, A. et al. Integrating GRK2 and NFkappaB in the Pathophysiology of Cardiac Hypertrophy. J. of Cardiovasc. Trans. Res. 8, 493–502 (2015). https://doi.org/10.1007/s12265-015-9646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9646-0

Keywords

Navigation