Skip to main content

Advertisement

Log in

Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Aortic valve disease (AVD) and aortopathy are associated with substantial morbidity and mortality, representing a significant cardiovascular healthcare burden worldwide. These mechanobiological structures are morphogenetically related and function in unison from embryonic development through mature adult tissue homeostasis, serving both coordinated and distinct roles. In addition to sharing common developmental origins, diseases of the aortic valve and proximal thoracic aorta often present together clinically. Current research efforts are focused on identifying etiologic factors and elucidating pathogenesis, including genetic predisposition, maladaptive cell-matrix remodeling processes, and hemodynamic and biomechanical perturbations. Here, we review the impact of these processes as they pertain to translational research efforts, emphasizing the overlapping relationship of these two disease processes. The successful application of new therapeutic strategies and novel tissue bioprostheses for AVD and/or aortopathy will require an understanding and integration of molecular and biomechanical processes for both diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nkomo, V. T., Gardin, J. M., Skelton, T. N., Gottdiener, J. S., Scott, C. G., & Enriquez-Sarano, M. (2006). Burden of valvular heart diseases: a population-based study. Lancet, 368(9540), 1005–1011. doi:10.1016/S0140-6736(06)69208-8.

    PubMed  Google Scholar 

  2. Rajamannan, N. M., Gersh, B., & Bonow, R. O. (2003). Calcific aortic stenosis: from bench to the bedside—emerging clinical and cellular concepts. Heart, 89(7), 801–805.

    PubMed Central  PubMed  Google Scholar 

  3. Celermajer, D. S., Chow, C. K., Marijon, E., Anstey, N. M., & Woo, K. S. (2012). Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. Journal of the American College of Cardiology, 60(14), 1207–1216. doi:10.1016/j.jacc.2012.03.074.

    PubMed  Google Scholar 

  4. Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., Dai, S., Ford, E. S., Fox, C. S., Franco, S., Fullerton, H. J., Gillespie, C., Hailpern, S. M., Heit, J. A., Howard, V. J., Huffman, M. D., Judd, S. E., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Mackey, R. H., Magid, D. J., Marcus, G. M., Marelli, A., Matchar, D. B., McGuire, D. K., Mohler, E. R., 3rd, Moy, C. S., Mussolino, M. E., Neumar, R. W., Nichol, G., Pandey, D. K., Paynter, N. P., Reeves, M. J., Sorlie, P. D., Stein, J., Towfighi, A., Turan, T. N., Virani, S. S., Wong, N. D., Woo, D., Turner, M. B., American Heart Association Statistics C, & Stroke Statistics, S. (2014). Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation, 129(3), e28–e292. doi:10.1161/01.cir.0000441139.02102.80.

    PubMed  Google Scholar 

  5. Rajamannan, N. M., Evans, F. J., Aikawa, E., Grande−Allen, K. J., Demer, L. L., Heistad, D. D., Simmons, C. A., Masters, K. S., Mathieu, P., O’Brien, K. D., Schoen, F. J., Towler, D. A., Yoganathan, A. P., & Otto, C. M. (2011). Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease—2011 update. Circulation, 124(16), 1783–1791. doi:10.1161/CIRCULATIONAHA.110.006767.

    PubMed Central  PubMed  Google Scholar 

  6. Horne, B. D., Camp, N. J., Muhlestein, J. B., & Cannon-Albright, L. A. (2004). Evidence for a heritable component in death resulting from aortic and mitral valve diseases. Circulation, 110(19), 3143–3148. doi:10.1161/01.CIR.0000147189.85636.C3.

    PubMed  Google Scholar 

  7. Roberts, W. C. (1970). The congenitally bicuspid aortic valve. A study of 85 autopsy cases. American Journal of Cardiology, 26(1), 72–83.

    CAS  PubMed  Google Scholar 

  8. Schoen, F. J. (2008). Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 118(18), 1864–1880. doi:10.1161/CIRCULATIONAHA.108.805911.

    PubMed  Google Scholar 

  9. Momma, K. (2010). Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. The American Journal of Cardiology, 105(11), 1617–1624. doi:10.1016/j.amjcard. 2010.01.333.

    CAS  PubMed  Google Scholar 

  10. Pierpont, M. E., Markwald, R. R., & Lin, A. E. (2000). Genetic aspects of atrioventricular septal defects. American Journal of Medical Genetics, 97(4), 289–296.

    CAS  PubMed  Google Scholar 

  11. Sachdev, V., Matura, L. A., Sidenko, S., Ho, V. B., Arai, A. E., Rosing, D. R., & Bondy, C. A. (2008). Aortic valve disease in Turner syndrome. Journal of the American College of Cardiology, 51(19), 1904–1909. doi:10.1016/j.jacc.2008.02.035.

    PubMed  Google Scholar 

  12. Calloway, T. J., Martin, L. J., Zhang, X., Tandon, A., Benson, D. W., & Hinton, R. B. (2011). Risk factors for aortic valve disease in bicuspid aortic valve: a family-based study. American Journal of Medical Genetics Part A, 155A(5), 1015–1020. doi:10.1002/ajmg.a.33974.

    PubMed  Google Scholar 

  13. McBride, K. L., Pignatelli, R., Lewin, M., Ho, T., Fernbach, S., Menesses, A., Lam, W., Leal, S. M., Kaplan, N., Schliekelman, P., Towbin, J. A., & Belmont, J. W. (2005). Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: Segregation, multiplex relative risk, and heritability. American Journal of Medical Genetics Part A, 134A(2), 180–186. doi:10.1002/ajmg.a.30602.

    PubMed  Google Scholar 

  14. Garg, V., Muth, A. N., Ransom, J. F., Schluterman, M. K., Barnes, R., King, I. N., Grossfeld, P. D., & Srivastava, D. (2005). Mutations in NOTCH1 cause aortic valve disease. Nature, 437(7056), 270–274. doi:10.1038/nature03940.

    CAS  PubMed  Google Scholar 

  15. Eronen, M., Peippo, M., Hiippala, A., Raatikka, M., Arvio, M., Johansson, R., & Kahkonen, M. (2002). Cardiovascular manifestations in 75 patients with Williams syndrome. Journal of Medical Genetics, 39(8), 554–558.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Guo, D. C., Pannu, H., Tran-Fadulu, V., Papke, C. L., Yu, R. K., Avidan, N., Bourgeois, S., Estrera, A. L., Safi, H. J., Sparks, E., Amor, D., Ades, L., McConnell, V., Willoughby, C. E., Abuelo, D., Willing, M., Lewis, R. A., Kim, D. H., Scherer, S., Tung, P. P., Ahn, C., Buja, L. M., Raman, C. S., Shete, S. S., & Milewicz, D. M. (2007). Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nature Genetics, 39(12), 1488–1493. doi:10.1038/ng.2007.6.

    CAS  PubMed  Google Scholar 

  17. Nistri, S., Porciani, M. C., Attanasio, M., Abbate, R., Gensini, G. F., & Pepe, G. (2012). Association of Marfan syndrome and bicuspid aortic valve: frequency and outcome. International Journal of Cardiology, 155(2), 324–325. doi:10.1016/j.ijcard.2011.12.009.

    PubMed  Google Scholar 

  18. Tan, H. L., Glen, E., Topf, A., Hall, D., O’Sullivan, J. J., Sneddon, L., Wren, C., Avery, P., Lewis, R. J., ten Dijke, P., Arthur, H. M., Goodship, J. A., & Keavney, B. D. (2012). Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Human Mutation, 33(4), 720–727. doi:10.1002/humu.22030.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Freeman, R. V., & Otto, C. M. (2005). Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation, 111(24), 3316–3326. doi:10.1161/CIRCULATIONAHA.104.486738.

    PubMed  Google Scholar 

  20. Donald, D., Heistad, C. S., Carabello, B. A., Gould, S. T., Srigunapalan, S., Craig, A., Towler, D. A., Weiss, R. M., Miller, J. D., Lindman, B. R., Bonow, R. O., Otto, C. M., & Demer, L. L. (2013). Compendium on aortic valve disease. Circulation Research, 113, 176–237.

    Google Scholar 

  21. Yutzey, K. E., Demer, L. L., Body, S. C., Huggins, G. S., Towler, D. A., Giachelli, C. M., Hofmann-Bowman, M. A., Mortlock, D. P., Rogers, M. B., Sadeghi, M. M., & Aikawa, E. (2014). Calcific aortic valve disease: a consensus summary from the alliance of investigators on calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(11), 2387–2393. doi:10.1161/ATVBAHA.114.302523.

    CAS  PubMed  Google Scholar 

  22. Rogers, A. M., Hermann, L. K., Booher, A. M., Nienaber, C. A., Williams, D. M., Kazerooni, E. A., Froehlich, J. B., O’Gara, P. T., Montgomery, D. G., Cooper, J. V., Harris, K. M., Hutchison, S., Evangelista, A., Isselbacher, E. M., Eagle, K. A., & Investigators, I. (2011). Sensitivity of the aortic dissection detection risk score, a novel guideline-based tool for identification of acute aortic dissection at initial presentation: results from the international registry of acute aortic dissection. Circulation, 123(20), 2213–2218. doi:10.1161/CIRCULATIONAHA.110.988568.

    PubMed  Google Scholar 

  23. Hiratzka, L. F., Bakris, G. L., Beckman, J. A., Bersin, R. M., Carr, V. F., Casey, D. E., Jr., Eagle, K. A., Hermann, L. K., Isselbacher, E. M., Kazerooni, E. A., Kouchoukos, N. T., Lytle, B. W., Milewicz, D. M., Reich, D. L., Sen, S., Shinn, J. A., Svensson, L. G., & Williams, D. M. (2010). 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation, 121(13), e266–e369. doi:10.1161/CIR.0b013e3181d4739e.

    PubMed  Google Scholar 

  24. Svensson, L. G., & Rodriguez, E. R. (2005). Aortic organ disease epidemic, and why do balloons pop? Circulation, 112(8), 1082–1084. doi:10.1161/CIRCULATIONAHA.105.564682.

    PubMed  Google Scholar 

  25. Tadros, T. M., Klein, M. D., & Shapira, O. M. (2009). Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation, 119(6), 880–890. doi:10.1161/CIRCULATIONAHA.108.795401.

    PubMed  Google Scholar 

  26. Milewicz, D. M., Guo, D. C., Tran-Fadulu, V., Lafont, A. L., Papke, C. L., Inamoto, S., Kwartler, C. S., & Pannu, H. (2008). Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annual Review of Genomics and Human Genetics, 9, 283–302. doi:10.1146/annurev.genom.8.080706.092303.

    CAS  PubMed  Google Scholar 

  27. Milewicz, D. M., Chen, H., Park, E. S., Petty, E. M., Zaghi, H., Shashidhar, G., Willing, M., & Patel, V. (1998). Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. The American Journal of Cardiology, 82(4), 474–479.

    CAS  PubMed  Google Scholar 

  28. Pape, L. A., Tsai, T. T., Isselbacher, E. M., Oh, J. K., O’Gara, P. T., Evangelista, A., Fattori, R., Meinhardt, G., Trimarchi, S., Bossone, E., Suzuki, T., Cooper, J. V., Froehlich, J. B., Nienaber, C. A., & Eagle, K. A. (2007). Aortic diameter > or =5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation, 116(10), 1120–1127. doi:10.1161/CIRCULATIONAHA.107.702720.

    PubMed  Google Scholar 

  29. Dietz, H. C., Cutting, G. R., Pyeritz, R. E., Maslen, C. L., Sakai, L. Y., Corson, G. M., Puffenberger, E. G., Hamosh, A., Nanthakumar, E. J., Curristin, S. M., et al. (1991). Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature, 352(6333), 337–339. doi:10.1038/352337a0.

    CAS  PubMed  Google Scholar 

  30. Szabo, Z., Crepeau, M. W., Mitchell, A. L., Stephan, M. J., Puntel, R. A., Yin Loke, K., Kirk, R. C., & Urban, Z. (2006). Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. Journal of Medical Genetics, 43(3), 255–258. doi:10.1136/jmg.2005.034157.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang, L., Guo, D. C., Cao, J., Gong, L., Kamm, K. E., Regalado, E., Li, L., Shete, S., He, W. Q., Zhu, M. S., Offermanns, S., Gilchrist, D., Elefteriades, J., Stull, J. T., & Milewicz, D. M. (2010). Mutations in myosin light chain kinase cause familial aortic dissections. American Journal of Human Genetics, 87(5), 701–707. doi:10.1016/j.ajhg.2010.10.006.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhu, L., Vranckx, R., Khau Van Kien, P., Lalande, A., Boisset, N., Mathieu, F., Wegman, M., Glancy, L., Gasc, J. M., Brunotte, F., Bruneval, P., Wolf, J. E., Michel, J. B., & Jeunemaitre, X. (2006). Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nature Genetics, 38(3), 343–349. doi:10.1038/ng1721.

    CAS  PubMed  Google Scholar 

  33. Vaughan, C. J., Casey, M., He, J., Veugelers, M., Henderson, K., Guo, D., Campagna, R., Roman, M. J., Milewicz, D. M., Devereux, R. B., & Basson, C. T. (2001). Identification of a chromosome 11q23.2-q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation, 103(20), 2469–2475.

    CAS  PubMed  Google Scholar 

  34. Guo, D., Hasham, S., Kuang, S. Q., Vaughan, C. J., Boerwinkle, E., Chen, H., Abuelo, D., Dietz, H. C., Basson, C. T., Shete, S. S., & Milewicz, D. M. (2001). Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13–14. Circulation, 103(20), 2461–2468.

    CAS  PubMed  Google Scholar 

  35. Loeys, B. L., Chen, J., Neptune, E. R., Judge, D. P., Podowski, M., Holm, T., Meyers, J., Leitch, C. C., Katsanis, N., Sharifi, N., Xu, F. L., Myers, L. A., Spevak, P. J., Cameron, D. E., De Backer, J., Hellemans, J., Chen, Y., Davis, E. C., Webb, C. L., Kress, W., Coucke, P., Rifkin, D. B., De Paepe, A. M., & Dietz, H. C. (2005). A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nature Genetics, 37(3), 275–281. doi:10.1038/ng1511.

    CAS  PubMed  Google Scholar 

  36. Purnell, R., Williams, I., Von Oppell, U., & Wood, A. (2005). Giant aneurysms of the sinuses of Valsalva and aortic regurgitation in a patient with Noonan’s syndrome. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-Thoracic Surgery, 28(2), 346–348. doi:10.1016/j.ejcts.2005.05.004.

    Google Scholar 

  37. McElhinney, D. B., Krantz, I. D., Bason, L., Piccoli, D. A., Emerick, K. M., Spinner, N. B., & Goldmuntz, E. (2002). Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation, 106(20), 2567–2574.

    PubMed  Google Scholar 

  38. Boileau, C., Guo, D. C., Hanna, N., Regalado, E. S., Detaint, D., Gong, L., Varret, M., Prakash, S. K., Li, A. H., d’Indy, H., Braverman, A. C., Grandchamp, B., Kwartler, C. S., Gouya, L., Santos-Cortez, R. L., Abifadel, M., Leal, S. M., Muti, C., Shendure, J., Gross, M. S., Rieder, M. J., Vahanian, A., Nickerson, D. A., Michel, J. B., Jondeau, G., & Milewicz, D. M. (2012). TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nature Genetics, 44(8), 916–921. doi:10.1038/ng.2348.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. van de Laar, I. M., Oldenburg, R. A., Pals, G., Roos-Hesselink, J. W., de Graaf, B. M., Verhagen, J. M., Hoedemaekers, Y. M., Willemsen, R., Severijnen, L. A., Venselaar, H., Vriend, G., Pattynama, P. M., Collee, M., Majoor-Krakauer, D., Poldermans, D., Frohn-Mulder, I. M., Micha, D., Timmermans, J., Hilhorst-Hofstee, Y., Bierma-Zeinstra, S. M., Willems, P. J., Kros, J. M., Oei, E. H., Oostra, B. A., Wessels, M. W., & Bertoli-Avella, A. M. (2011). Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nature Genetics, 43(2), 121–126. doi:10.1038/ng.744.

    PubMed  Google Scholar 

  40. Doyle, A. J., Doyle, J. J., Bessling, S. L., Maragh, S., Lindsay, M. E., Schepers, D., Gillis, E., Mortier, G., Homfray, T., Sauls, K., Norris, R. A., Huso, N. D., Leahy, D., Mohr, D. W., Caulfield, M. J., Scott, A. F., Destree, A., Hennekam, R. C., Arn, P. H., Curry, C. J., Van Laer, L., McCallion, A. S., Loeys, B. L., & Dietz, H. C. (2012). Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nature Genetics, 44(11), 1249–1254. doi:10.1038/ng.2421.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Teekakirikul, P., Milewicz, D. M., Miller, D. T., Lacro, R. V., Regalado, E. S., Rosales, A. M., Ryan, D. P., Toler, T. L., & Lin, A. E. (2013). Thoracic aortic disease in two patients with juvenile polyposis syndrome and SMAD4 mutations. American Journal of Medical Genetics Part A, 161A(1), 185–191. doi:10.1002/ajmg.a.35659.

    PubMed  Google Scholar 

  42. Guo, D. C., Regalado, E., Casteel, D. E., Santos-Cortez, R. L., Gong, L., Kim, J. J., Dyack, S., Horne, S. G., Chang, G., Jondeau, G., Boileau, C., Coselli, J. S., Li, Z., Leal, S. M., Shendure, J., Rieder, M. J., Bamshad, M. J., Nickerson, D. A., Kim, C., & Milewicz, D. M. (2013). Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. American Journal of Human Genetics, 93(2), 398–404. doi:10.1016/j.ajhg.2013.06.019.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. McKellar, S. H., Tester, D. J., Yagubyan, M., Majumdar, R., Ackerman, M. J., & Sundt, T. M., 3rd. (2007). Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. Journal of Thoracic and Cardiovascular Surgery, 134(2), 290–296. doi:10.1016/j.jtcvs.2007.02.041.

    CAS  PubMed  Google Scholar 

  44. Stary, H. C., Chandler, A. B., Dinsmore, R. E., Fuster, V., Glagov, S., Insull, W., Jr., Rosenfeld, M. E., Schwartz, C. J., Wagner, W. D., & Wissler, R. W. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 92(5), 1355–1374.

    CAS  PubMed  Google Scholar 

  45. Albini, P. T., Segura, A. M., Liu, G., Minard, C. G., Coselli, J. S., Milewicz, D. M., Shen, Y. H., & LeMaire, S. A. (2014). Advanced atherosclerosis is associated with increased medial degeneration in sporadic ascending aortic aneurysms. Atherosclerosis, 232(2), 361–368. doi:10.1016/j.atherosclerosis.2013.10.035.

    CAS  PubMed  Google Scholar 

  46. Biasucci, L. M., & Cdc, A. (2004). CDC/AHA Workshop on markers of inflammation and cardiovascular disease: application to clinical and public health practice: clinical use of inflammatory markers in patients with cardiovascular diseases: a background paper. Circulation, 110(25), e560–e567. doi:10.1161/01.CIR.0000148983.88334.80.

    PubMed  Google Scholar 

  47. Golledge, J., & Norman, P. E. (2010). Atherosclerosis and abdominal aortic aneurysm: cause, response, or common risk factors? Arteriosclerosis, Thrombosis, and Vascular Biology, 30(6), 1075–1077. doi:10.1161/ATVBAHA.110.206573.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Fedak, P. W., Verma, S., David, T. E., Leask, R. L., Weisel, R. D., & Butany, J. (2002). Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation, 106(8), 900–904.

    PubMed  Google Scholar 

  49. Russo, C. F., Cannata, A., Lanfranconi, M., Vitali, E., Garatti, A., & Bonacina, E. (2008). Is aortic wall degeneration related to bicuspid aortic valve anatomy in patients with valvular disease? Journal of Thoracic and Cardiovascular Surgery, 136(4), 937–942. doi:10.1016/j.jtcvs.2007.11.072.

    PubMed  Google Scholar 

  50. Siu, S. C., & Silversides, C. K. (2010). Bicuspid aortic valve disease. Journal of the American College of Cardiology, 55(25), 2789–2800. doi:10.1016/j.jacc.2009.12.068.

    PubMed  Google Scholar 

  51. Cattell, M. A., Hasleton, P. S., & Anderson, J. C. (1994). Glycosaminoglycan content is increased in dissecting aneurysms of human thoracic aorta. Clinica Chimica Acta, 226(1), 29–46.

    CAS  Google Scholar 

  52. Otto, C. M., Kuusisto, J., Reichenbach, D. D., Gown, A. M., & O’Brien, K. D. (1994). Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation, 90(2), 844–853.

    CAS  PubMed  Google Scholar 

  53. Hinton, R. B. (2012). Bicuspid aortic valve and thoracic aortic aneurysm: three patient populations, two disease phenotypes, and one shared genotype. Cardiology Research and Practice, 2012, 926975. doi:10.1155/2012/926975.

    PubMed Central  PubMed  Google Scholar 

  54. Otto, C. M. (2006). Valvular aortic stenosis: disease severity and timing of intervention. Journal of the American College of Cardiology, 47(11), 2141–2151. doi:10.1016/j.jacc.2006.03.002.

    PubMed  Google Scholar 

  55. Tzemos, N., Therrien, J., Yip, J., Thanassoulis, G., Tremblay, S., Jamorski, M. T., Webb, G. D., & Siu, S. C. (2008). Outcomes in adults with bicuspid aortic valves. JAMA, 300(11), 1317–1325. doi:10.1001/jama.300.11.1317.

    CAS  PubMed  Google Scholar 

  56. Stephens, E. H., de Jonge, N., McNeill, M. P., Durst, C. A., & Grande-Allen, K. J. (2010). Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Engineering Part A, 16(3), 867–878. doi:10.1089/ten.TEA.2009.0288.

    PubMed  Google Scholar 

  57. Krishnamurthy, V. K., Guilak, F., Narmoneva, D. A., & Hinton, R. B. (2011). Regional structure-function relationships in mouse aortic valve tissue. Journal of Biomechanics, 44(1), 77–83. doi:10.1016/j.jbiomech.2010.08.026.

    PubMed Central  PubMed  Google Scholar 

  58. Pezet, M., Jacob, M. P., Escoubet, B., Gheduzzi, D., Tillet, E., Perret, P., Huber, P., Quaglino, D., Vranckx, R., Li, D. Y., Starcher, B., Boyle, W. A., Mecham, R. P., & Faury, G. (2008). Elastin haploinsufficiency induces alternative aging processes in the aorta. Rejuvenation Research, 11(1), 97–112. doi:10.1089/rej.2007.0587.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Roberts, W. C., Ko, J. M., & Hamilton, C. (2005). Comparison of valve structure, valve weight, and severity of the valve obstruction in 1849 patients having isolated aortic valve replacement for aortic valve stenosis (with or without associated aortic regurgitation) studied at 3 different medical centers in 2 different time periods. Circulation, 112(25), 3919–3929. doi:10.1161/CIRCULATIONAHA.105.543280.

    PubMed  Google Scholar 

  60. Roberts, W. C., & Ko, J. M. (2005). Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation, 111(7), 920–925. doi:10.1161/01.CIR.0000155623.48408.C5.

    PubMed  Google Scholar 

  61. Stewart, B. F., Siscovick, D., Lind, B. K., Gardin, J. M., Gottdiener, J. S., Smith, V. E., Kitzman, D. W., & Otto, C. M. (1997). Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. Journal of the American College of Cardiology, 29(3), 630–634.

    CAS  PubMed  Google Scholar 

  62. Otto, C. M., Lind, B. K., Kitzman, D. W., Gersh, B. J., & Siscovick, D. S. (1999). Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. New England Journal of Medicine, 341(3), 142–147. doi:10.1056/NEJM199907153410302.

    CAS  PubMed  Google Scholar 

  63. Albornoz, G., Coady, M. A., Roberts, M., Davies, R. R., Tranquilli, M., Rizzo, J. A., & Elefteriades, J. A. (2006). Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. The Annals of Thoracic Surgery, 82(4), 1400–1405. doi:10.1016/j.athoracsur.2006.04.098.

    PubMed  Google Scholar 

  64. Lasheras, J. C. (2007). The biomechanics of arterial aneurysms. Annual Review of Fluid Mechanics, 39, 293–319. doi:10.1146/annurev.fluid.39.050905.110128.

    Google Scholar 

  65. Holmes, K. W., Maslen, C. L., Kindem, M., Kroner, B. L., Song, H. K., Ravekes, W., Dietz, H. C., Weinsaft, J. W., Roman, M. J., Devereux, R. B., Pyeritz, R. E., Bavaria, J., Milewski, K., Milewicz, D., LeMaire, S. A., Hendershot, T., Eagle, K. A., Tolunay, H. E., Desvigne-Nickens, P., & Silberbach, M. (2013). GenTAC registry report: gender differences among individuals with genetically triggered thoracic aortic aneurysm and dissection. American Journal of Medical Genetics Part A, 161A(4), 779–786. doi:10.1002/ajmg.a.35836.

    PubMed  Google Scholar 

  66. Nassimiha, D., Aronow, W. S., Ahn, C., & Goldman, M. E. (2001). Association of coronary risk factors with progression of valvular aortic stenosis in older persons. American Journal of Cardiology, 87(11), 1313–1314.

    CAS  PubMed  Google Scholar 

  67. Ngo, M. V., Gottdiener, J. S., Fletcher, R. D., Fernicola, D. J., & Gersh, B. J. (2001). Smoking and obesity are associated with the progression of aortic stenosis. The American Journal of Geriatric Cardiology, 10(2), 86–90.

    CAS  PubMed  Google Scholar 

  68. Towler, D. A. (2013). Molecular and cellular aspects of calcific aortic valve disease. Circulation Research, 113(2), 198–208. doi:10.1161/CIRCRESAHA.113.300155.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Cripe, L., Andelfinger, G., Martin, L. J., Shooner, K., & Benson, D. W. (2004). Bicuspid aortic valve is heritable. Journal of the American College of Cardiology, 44(1), 138–143. doi:10.1016/j.jacc.2004.03.050.

    PubMed  Google Scholar 

  70. Webb, S., Qayyum, S. R., Anderson, R. H., Lamers, W. H., & Richardson, M. K. (2003). Septation and separation within the outflow tract of the developing heart. Journal of Anatomy, 202(4), 327–342.

    PubMed Central  PubMed  Google Scholar 

  71. Mjaatvedt, C. H., Nakaoka, T., Moreno-Rodriguez, R., Norris, R. A., Kern, M. J., Eisenberg, C. A., Turner, D., & Markwald, R. R. (2001). The outflow tract of the heart is recruited from a novel heart-forming field. Developmental Biology, 238(1), 97–109. doi:10.1006/dbio.2001.0409.

    CAS  PubMed  Google Scholar 

  72. Kirby, M. L., Gale, T. F., & Stewart, D. E. (1983). Neural crest cells contribute to normal aorticopulmonary septation. Science, 220(4601), 1059–1061.

    CAS  PubMed  Google Scholar 

  73. Majesky, M. W. (2007). Developmental basis of vascular smooth muscle diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(6), 1248–1258. doi:10.1161/ATVBAHA.107.141069.

    CAS  PubMed  Google Scholar 

  74. Krishnamurthy, V. K., Evans, A. N., Wansapura, J. P., Osinska, H., Maddy, K. E., Biechler, S. V., Narmoneva, D. A., Goodwin, R. L., & Hinton, R. B. (2014). Asymmetric cell-matrix and biomechanical abnormalities in elastin insufficiency induced aortopathy. Annals of Biomedical Engineering. doi:10.1007/s10439-014-1072-y.

    PubMed  Google Scholar 

  75. Yacoub, M. H., Kilner, P. J., Birks, E. J., & Misfeld, M. (1999). The aortic outflow and root: a tale of dynamism and crosstalk. Annals of Thoracic Surgery, 68(3 Suppl), S37–S43.

    CAS  PubMed  Google Scholar 

  76. Aikawa, E., Whittaker, P., Farber, M., Mendelson, K., Padera, R. F., Aikawa, M., & Schoen, F. J. (2006). Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation, 113(10), 1344–1352. doi:10.1161/CIRCULATIONAHA.105.591768.

    PubMed  Google Scholar 

  77. Hinton, R. B., Jr., Lincoln, J., Deutsch, G. H., Osinska, H., Manning, P. B., Benson, D. W., & Yutzey, K. E. (2006). Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circulation Research, 98(11), 1431–1438. doi:10.1161/01.RES.0000224114.65109.4e.

    CAS  PubMed  Google Scholar 

  78. Votteler, M., Berrio, D. A., Horke, A., Sabatier, L., Reinhardt, D. P., Nsair, A., Aikawa, E., & Schenke-Layland, K. (2013). Elastogenesis at the onset of human cardiac valve development. Development, 140(11), 2345–2353. doi:10.1242/dev.093500.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Gross, L., & Kugel, M.A. (1931). Topographic anatomy and histology of the valves in the human heart. American Journal of Pathology, 7(5), 445–474 447.

  80. Zimmerman, J., & Bailey, C. P. (1962). The surgical significance of the fibrous skeleton of the heart. Journal of Thoracic and Cardiovascular Surgery, 44, 12.

    Google Scholar 

  81. Hinton, R. B., & Yutzey, K. E. (2011). Heart valve structure and function in development and disease. Annual Review of Physiology, 73, 29–46. doi:10.1146/annurev-physiol-012110-142145.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Latif, N., Sarathchandra, P., Taylor, P. M., Antoniw, J., & Yacoub, M. H. (2005). Localization and pattern of expression of extracellular matrix components in human heart valves. Journal of Heart Valve Disease, 14(2), 218–227.

    PubMed  Google Scholar 

  83. Schoen, F. J. (1997). Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. Journal of Heart Valve Disease, 6(1), 1–6.

    CAS  PubMed  Google Scholar 

  84. Anderson, R. H. (2000). Clinical anatomy of the aortic root. Heart, 84(6), 670–673.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Armstrong, E. J., & Bischoff, J. (2004). Heart valve development: endothelial cell signaling and differentiation. Circulation Research, 95(5), 459–470. doi:10.1161/01.RES.0000141146.95728.da.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. de Lange, F. J., Moorman, A. F., Anderson, R. H., Manner, J., Soufan, A. T., de Gier-de, V. C., Schneider, M. D., Webb, S., van den Hoff, M. J., & Christoffels, V. M. (2004). Lineage and morphogenetic analysis of the cardiac valves. Circulation Research, 95(6), 645–654. doi:10.1161/01.RES.0000141429.13560.cb.

    PubMed  Google Scholar 

  87. Lincoln, J., Alfieri, C. M., & Yutzey, K. E. (2004). Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 230(2), 239–250. doi:10.1002/dvdy.20051.

    CAS  Google Scholar 

  88. Liu, A. C., Joag, V. R., & Gotlieb, A. I. (2007). The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. American Journal of Pathology, 171(5), 1407–1418. doi:10.2353/ajpath.2007.070251.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Filip, D. A., Radu, A., & Simionescu, M. (1986). Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circulation Research, 59(3), 310–320.

    CAS  PubMed  Google Scholar 

  90. Latif, N., Sarathchandra, P., Chester, A. H., & Yacoub, M. H. (2014). Expression of smooth muscle cell markers and co-activators in calcified aortic valves. European Heart Journal. doi:10.1093/eurheartj/eht547.

    PubMed  Google Scholar 

  91. Butcher, J. T., Tressel, S., Johnson, T., Turner, D., Sorescu, G., Jo, H., & Nerem, R. M. (2006). Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(1), 69–77. doi:10.1161/01.ATV.0000196624.70507.0d.

    CAS  PubMed  Google Scholar 

  92. Majesky, M. W., Dong, X. R., Hoglund, V., Mahoney, W. M., Jr., & Daum, G. (2011). The adventitia: a dynamic interface containing resident progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(7), 1530–1539. doi:10.1161/ATVBAHA.110.221549.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ross, R., & Bornstein, P. (1969). The elastic fiber. I. The separation and partial characterization of its macromolecular components. Journal of Cell Biology, 40(2), 366–381.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fibres. Journal of Cell Science, 115(Pt 14), 2817–2828.

    CAS  PubMed  Google Scholar 

  95. Karnik, S. K., Brooke, B. S., Bayes-Genis, A., Sorensen, L., Wythe, J. D., Schwartz, R. S., Keating, M. T., & Li, D. Y. (2003). A critical role for elastin signaling in vascular morphogenesis and disease. Development, 130(2), 411–423.

    CAS  PubMed  Google Scholar 

  96. Li, D. Y., Brooke, B., Davis, E. C., Mecham, R. P., Sorensen, L. K., Boak, B. B., Eichwald, E., & Keating, M. T. (1998). Elastin is an essential determinant of arterial morphogenesis. Nature, 393(6682), 276–280. doi:10.1038/30522.

    CAS  PubMed  Google Scholar 

  97. Aikawa, E., Aikawa, M., Libby, P., Figueiredo, J. L., Rusanescu, G., Iwamoto, Y., Fukuda, D., Kohler, R. H., Shi, G. P., Jaffer, F. A., & Weissleder, R. (2009). Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation, 119(13), 1785–1794. doi:10.1161/CIRCULATIONAHA.108.827972.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Rothenburger, M., Volker, W., Vischer, P., Glasmacher, B., Scheld, H. H., & Deiwick, M. (2002). Ultrastructure of proteoglycans in tissue-engineered cardiovascular structures. Tissue Engineering, 8(6), 1049–1056. doi:10.1089/107632702320934146.

    CAS  PubMed  Google Scholar 

  99. Kinsella, M. G., Bressler, S. L., & Wight, T. N. (2004). The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Critical Reviews in Eukaryotic Gene Expression, 14(3), 203–234.

    CAS  PubMed  Google Scholar 

  100. Iozzo, R. V., & Schaefer, L. (2010). Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS Journal, 277(19), 3864–3875. doi:10.1111/j.1742-4658.2010.07797.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Duran, C. M., & Gunning, A. J. (1968). The vascularization of the heart valves: a comparative study. Cardiovascular Research, 2(3), 290–296.

    CAS  PubMed  Google Scholar 

  102. Simionescu, D. T., Lovekamp, J. J., & Vyavahare, N. R. (2003). Glycosaminoglycan-degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration. The Journal of Heart Valve Disease, 12(2), 217–225.

    PubMed  Google Scholar 

  103. Azeloglu, E. U., Albro, M. B., Thimmappa, V. A., Ateshian, G. A., & Costa, K. D. (2008). Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. American Journal of Physiology—Heart and Circulatory Physiology, 294(3), H1197–H1205. doi:10.1152/ajpheart.01027.2007.

    CAS  PubMed  Google Scholar 

  104. Stephens, E. H., Saltarrelli, J. G., Baggett, L. S., Nandi, I., Kuo, J. J., Davis, A. R., Olmsted-Davis, E. A., Reardon, M. J., Morrisett, J. D., & Grande-Allen, K. J. (2011). Differential proteoglycan and hyaluronan distribution in calcified aortic valves. Cardiovascular Pathology: The Official Journal of the Society for Cardiovascular Pathology, 20(6), 334–342. doi:10.1016/j.carpath.2010.10.002.

    CAS  Google Scholar 

  105. Krishnamurthy, V. K., Opoka, A. M., Kern, C. B., Guilak, F., Narmoneva, D. A., & Hinton, R. B. (2012). Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease. Matrix Biology: Journal of the International Society for Matrix Biology, 31(3), 197–205. doi:10.1016/j.matbio.2012.01.001.

    CAS  Google Scholar 

  106. Kern, C. B., Wessels, A., McGarity, J., Dixon, L. J., Alston, E., Argraves, W. S., Geeting, D., Nelson, C. M., Menick, D. R., & Apte, S. S. (2010). Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biology, 29(4), 304–316. doi:10.1016/j.matbio.2010.01.005.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Mohamed, S. A., Sievers, H. H., Hanke, T., Richardt, D., Schmidtke, C., Charitos, E. I., Belge, G., & Bullerdiek, J. (2009). Pathway analysis of differentially expressed genes in patients with acute aortic dissection. Biomarker Insights, 4, 81–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Heegaard, A. M., Corsi, A., Danielsen, C. C., Nielsen, K. L., Jorgensen, H. L., Riminucci, M., Young, M. F., & Bianco, P. (2007). Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation, 115(21), 2731–2738. doi:10.1161/CIRCULATIONAHA.106.653980.

    CAS  PubMed  Google Scholar 

  109. Ren, P., Zhang, L., Xu, G., Palmero, L. C., Albini, P. T., Coselli, J. S., Shen, Y. H., & LeMaire, S. A. (2013). ADAMTS-1 and ADAMTS-4 levels are elevated in thoracic aortic aneurysms and dissections. The Annals of Thoracic Surgery, 95(2), 570–577. doi:10.1016/j.athoracsur.2012.10.084.

    PubMed Central  PubMed  Google Scholar 

  110. Merrilees, M. J., Beaumont, B. W., Braun, K. R., Thomas, A. C., Kang, I., Hinek, A., Passi, A., & Wight, T. N. (2011). Neointima formed by arterial smooth muscle cells expressing versican variant v3 is resistant to lipid and macrophage accumulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1309–1316. doi:10.1161/ATVBAHA.111.225573.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Hinton, R. B., Adelman-Brown, J., Witt, S., Krishnamurthy, V. K., Osinska, H., Sakthivel, B., James, J. F., Li, D. Y., Narmoneva, D. A., Mecham, R. P., & Benson, D. W. (2010). Elastin haploinsufficiency results in progressive aortic valve malformation and latent valve disease in a mouse model. Circulation Research, 107(4), 549–557. doi:10.1161/CIRCRESAHA.110.221358.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wu, Y. J., La Pierre, D. P., Wu, J., Yee, A. J., & Yang, B. B. (2005). The interaction of versican with its binding partners. Cell Research, 15(7), 483–494. doi:10.1038/sj.cr.7290318.

    CAS  PubMed  Google Scholar 

  113. Hinek, A., & Rabinovitch, M. (1994). 67-kD elastin-binding protein is a protective “companion” of extracellular insoluble elastin and intracellular tropoelastin. Journal of Cell Biology, 126(2), 563–574.

    CAS  PubMed  Google Scholar 

  114. Tseng, H., & Grande-Allen, K. J. (2011). Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Acta Biomaterialia, 7(5), 2101–2108. doi:10.1016/j.actbio.2011.01.022.

    CAS  PubMed  Google Scholar 

  115. Roccabianca, S., Bellini, C., & Humphrey, J. D. (2014). Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. Journal of the Royal Society, Interface the Royal Society, 11(97), 20140397. doi:10.1098/rsif.2014.0397.

    CAS  Google Scholar 

  116. Huang, R., Merrilees, M. J., Braun, K., Beaumont, B., Lemire, J., Clowes, A. W., Hinek, A., & Wight, T. N. (2006). Inhibition of versican synthesis by antisense alters smooth muscle cell phenotype and induces elastic fiber formation in vitro and in neointima after vessel injury. Circulation Research, 98(3), 370–377. doi:10.1161/01.RES.0000202051.28319.c8.

    CAS  PubMed  Google Scholar 

  117. Reinboth, B., Hanssen, E., Cleary, E. G., & Gibson, M. A. (2002). Molecular interactions of biglycan and decorin with elastic fiber components: biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. The Journal of Biological Chemistry, 277(6), 3950–3957. doi:10.1074/jbc.M109540200.

    CAS  PubMed  Google Scholar 

  118. Hwang, J. Y., Johnson, P. Y., Braun, K. R., Hinek, A., Fischer, J. W., O’Brien, K. D., Starcher, B., Clowes, A. W., Merrilees, M. J., & Wight, T. N. (2008). Retrovirally mediated overexpression of glycosaminoglycan-deficient biglycan in arterial smooth muscle cells induces tropoelastin synthesis and elastic fiber formation in vitro and in neointimae after vascular injury. American Journal of Pathology, 173(6), 1919–1928. doi:10.2353/ajpath.2008.070875.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Dupuis, L. E., & Kern, C. B. (2014). Small leucine-rich proteoglycans exhibit unique spatiotemporal expression profiles during cardiac valve development. Developmental Dynamics, 243(4), 601–611. doi:10.1002/dvdy.24100.

    CAS  PubMed  Google Scholar 

  120. Hinek, A., & Wilson, S. E. (2000). Impaired elastogenesis in Hurler disease: dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. American Journal of Pathology, 156(3), 925–938. doi:10.1016/S0002-9440(10)64961-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Golda, A., Jurecka, A., & Tylki-Szymanska, A. (2012). Cardiovascular manifestations of mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome). International Journal of Cardiology, 158(1), 6–11. doi:10.1016/j.ijcard.2011.06.097.

    PubMed  Google Scholar 

  122. Rabkin-Aikawa, E., Farber, M., Aikawa, M., & Schoen, F. J. (2004). Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. Journal of Heart Valve Disease, 13(5), 841–847.

    PubMed  Google Scholar 

  123. Pho, M., Lee, W., Watt, D. R., Laschinger, C., Simmons, C. A., & McCulloch, C. A. (2008). Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. American Journal of Physiology—Heart and Circulatory Physiology, 294(4), H1767–H1778. doi:10.1152/ajpheart.01305.2007.

    CAS  PubMed  Google Scholar 

  124. Aikawa, M., Sivam, P. N., Kuro-o, M., Kimura, K., Nakahara, K., Takewaki, S., Ueda, M., Yamaguchi, H., Yazaki, Y., Periasamy, M., et al. (1993). Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circulation Research, 73(6), 1000–1012.

    CAS  PubMed  Google Scholar 

  125. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801. doi:10.1152/physrev.00041.2003.

    CAS  PubMed  Google Scholar 

  126. Rosenquist, T. H., & Beall, A. C. (1990). Elastogenic cells in the developing cardiovascular system. Smooth muscle, nonmuscle, and cardiac neural crest. Annals of the New York Academy of Sciences, 588, 106–119.

    CAS  PubMed  Google Scholar 

  127. Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95(3), 253–260. doi:10.1161/01.RES.0000136520.07995.aa.

    CAS  PubMed  Google Scholar 

  128. Dreger, S. A., Taylor, P. M., Allen, S. P., & Yacoub, M. H. (2002). Profile and localization of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in human heart valves. Journal of Heart Valve Disease, 11(6), 875–880. discussion 880.

    PubMed  Google Scholar 

  129. Fedak, P. W., de Sa, M. P., Verma, S., Nili, N., Kazemian, P., Butany, J., Strauss, B. H., Weisel, R. D., & David, T. E. (2003). Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. Journal of Thoracic and Cardiovascular Surgery, 126(3), 797–806.

    PubMed  Google Scholar 

  130. LeMaire, S. A., Wang, X., Wilks, J. A., Carter, S. A., Wen, S., Won, T., Leonardelli, D., Anand, G., Conklin, L. D., Wang, X. L., Thompson, R. W., & Coselli, J. S. (2005). Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. Journal of Surgical Research, 123(1), 40–48. doi:10.1016/j.jss.2004.06.007.

    CAS  PubMed  Google Scholar 

  131. LeMaire, S. A., Pannu, H., Tran-Fadulu, V., Carter, S. A., Coselli, J. S., & Milewicz, D. M. (2007). Severe aortic and arterial aneurysms associated with a TGFBR2 mutation. Nature Clinical Practice. Cardiovascular Medicine, 4(3), 167–171. doi:10.1038/ncpcardio0797.

    PubMed Central  PubMed  Google Scholar 

  132. Ikonomidis, J. S., Jones, J. A., Barbour, J. R., Stroud, R. E., Clark, L. L., Kaplan, B. S., Zeeshan, A., Bavaria, J. E., Gorman, J. H., 3rd, Spinale, F. G., & Gorman, R. C. (2007). Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. Journal of Thoracic and Cardiovascular Surgery, 133(4), 1028–1036. doi:10.1016/j.jtcvs.2006.10.083.

    CAS  PubMed  Google Scholar 

  133. Togashi, M., Tamura, K., Nitta, T., Ishizaki, M., Sugisaki, Y., & Fukuda, Y. (2007). Role of matrix metalloproteinases and their tissue inhibitor of metalloproteinases in myxomatous change of cardiac floppy valves. Pathology International, 57(5), 251–259. doi:10.1111/j.1440-1827.2007.02096.x.

    CAS  PubMed  Google Scholar 

  134. Rabkin, E., Aikawa, M., Stone, J. R., Fukumoto, Y., Libby, P., & Schoen, F. J. (2001). Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation, 104(21), 2525–2532.

    CAS  PubMed  Google Scholar 

  135. Laforest, B., & Nemer, M. (2012). Genetic insights into bicuspid aortic valve formation. Cardiology Research and Practice, 2012, 180297. doi:10.1155/2012/180297.

    PubMed Central  PubMed  Google Scholar 

  136. Molkentin, J. D. (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. Journal of Biological Chemistry, 275(50), 38949–38952. doi:10.1074/jbc.R000029200.

    CAS  PubMed  Google Scholar 

  137. Thomas, P. S., Sridurongrit, S., Ruiz-Lozano, P., & Kaartinen, V. (2012). Deficient signaling via Alk2 (Acvr1) leads to bicuspid aortic valve development. PLoS ONE, 7(4), e35539. doi:10.1371/journal.pone.0035539.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Lindsay, M. E., Schepers, D., Bolar, N. A., Doyle, J. J., Gallo, E., Fert-Bober, J., Kempers, M. J., Fishman, E. K., Chen, Y., Myers, L., Bjeda, D., Oswald, G., Elias, A. F., Levy, H. P., Anderlid, B. M., Yang, M. H., Bongers, E. M., Timmermans, J., Braverman, A. C., Canham, N., Mortier, G. R., Brunner, H. G., Byers, P. H., Van Eyk, J., Van Laer, L., Dietz, H. C., & Loeys, B. L. (2012). Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nature Genetics, 44(8), 922–927. doi:10.1038/ng.2349.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Conway, S. J., Doetschman, T., & Azhar, M. (2011). The inter-relationship of periostin, TGF beta, and BMP in heart valve development and valvular heart diseases. ScientificWorldJournal, 11, 1509–1524. doi:10.1100/tsw.2011.132.

    CAS  PubMed  Google Scholar 

  140. Hanada, K., Vermeij, M., Garinis, G. A., de Waard, M. C., Kunen, M. G., Myers, L., Maas, A., Duncker, D. J., Meijers, C., Dietz, H. C., Kanaar, R., & Essers, J. (2007). Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circulation Research, 100(5), 738–746. doi:10.1161/01.RES.0000260181.19449.95.

    CAS  PubMed  Google Scholar 

  141. Ng, C. M., Cheng, A., Myers, L. A., Martinez-Murillo, F., Jie, C., Bedja, D., Gabrielson, K. L., Hausladen, J. M., Mecham, R. P., Judge, D. P., & Dietz, H. C. (2004). TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. The Journal of Clinical Investigation, 114(11), 1586–1592. doi:10.1172/JCI22715.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Weyman, A. E., & Scherrer-Crosbie, M. (2004). Marfan syndrome and mitral valve prolapse. The Journal of Clinical Investigation, 114(11), 1543–1546. doi:10.1172/JCI23701.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Yanagisawa, H., Davis, E. C., Starcher, B. C., Ouchi, T., Yanagisawa, M., Richardson, J. A., & Olson, E. N. (2002). Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature, 415(6868), 168–171. doi:10.1038/415168a.

    PubMed  Google Scholar 

  144. Munjal, C., Opoka, A. M., Osinska, H., James, J. F., Bressan, G. M., & Hinton, R. B. (2014). TGF-beta mediates early angiogenesis and latent fibrosis in an Emilin1-deficient mouse model of aortic valve disease. Disease Models & Mechanisms, 7(8), 987–996. doi:10.1242/dmm.015255.

    CAS  Google Scholar 

  145. Tkatchenko, T. V., Moreno-Rodriguez, R. A., Conway, S. J., Molkentin, J. D., Markwald, R. R., & Tkatchenko, A. V. (2009). Lack of periostin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiological Genomics, 39(3), 160–168. doi:10.1152/physiolgenomics.00078.2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Cheek, J. D., Wirrig, E. E., Alfieri, C. M., James, J. F., & Yutzey, K. E. (2012). Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. Journal of Molecular and Cellular Cardiology, 52(3), 689–700. doi:10.1016/j.yjmcc.2011.12.013.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Hofmann, J. J., Briot, A., Enciso, J., Zovein, A. C., Ren, S., Zhang, Z. W., Radtke, F., Simons, M., Wang, Y., & Iruela-Arispe, M. L. (2012). Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development, 139(23), 4449–4460. doi:10.1242/dev.084871.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Kokubo, H., Miyagawa-Tomita, S., Nakashima, Y., Kume, T., Yoshizumi, M., Nakanishi, T., & Saga, Y. (2013). Hesr2 knockout mice develop aortic valve disease with advancing age. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(3), e84–e92. doi:10.1161/ATVBAHA.112.300573.

    CAS  PubMed  Google Scholar 

  149. Nus, M., MacGrogan, D., Martinez-Poveda, B., Benito, Y., Casanova, J. C., Fernandez-Aviles, F., Bermejo, J., & de la Pompa, J. L. (2011). Diet-induced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(7), 1580–1588. doi:10.1161/ATVBAHA.111.227561.

    CAS  PubMed  Google Scholar 

  150. Weiss, R. M., Lund, D. D., Chu, Y., Brooks, R. M., Zimmerman, K. A., El Accaoui, R., Davis, M. K., Hajj, G. P., Zimmerman, M. B., & Heistad, D. D. (2013). Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. PLoS ONE, 8(6), e65201. doi:10.1371/journal.pone.0065201.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Sacks, M. S., David Merryman, W., & Schmidt, D. E. (2009). On the biomechanics of heart valve function. Journal of Biomechanics, 42(12), 1804–1824. doi:10.1016/j.jbiomech.2009.05.015.

    PubMed Central  PubMed  Google Scholar 

  152. Christie, G. W., & Barratt-Boyes, B. G. (1995). Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets? Annals of Thoracic Surgery, 60(2 Suppl), S195–S199.

    CAS  PubMed  Google Scholar 

  153. Billiar, K. L., & Sacks, M. S. (2000). Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II–A structural constitutive model. Journal of Biomechanical Engineering, 122(4), 327–335.

    CAS  PubMed  Google Scholar 

  154. Grande, K. J., Cochran, R. P., Reinhall, P. G., & Kunzelman, K. S. (1998). Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Annals of Biomedical Engineering, 26(4), 534–545.

    CAS  PubMed  Google Scholar 

  155. Marom, G., Haj-Ali, R., Rosenfeld, M., Schafers, H. J., & Raanani, E. (2013). Aortic root numeric model: annulus diameter prediction of effective height and coaptation in post-aortic valve repair. Journal of Thoracic and Cardiovascular Surgery, 145(2), 406–411. doi:10.1016/j.jtcvs.2012.01.080. e401.

    PubMed  Google Scholar 

  156. Hamdan, A., Guetta, V., Konen, E., Goitein, O., Segev, A., Raanani, E., Spiegelstein, D., Hay, I., Di Segni, E., Eldar, M., & Schwammenthal, E. (2012). Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. Journal of the American College of Cardiology, 59(2), 119–127. doi:10.1016/j.jacc.2011.09.045.

    PubMed  Google Scholar 

  157. Vesely, I. (1998). The role of elastin in aortic valve mechanics. Journal of Biomechanics, 31(2), 115–123.

    CAS  PubMed  Google Scholar 

  158. Bellhouse, B. J., & Reid, K. G. (1969). Fluid mechanics of the aortic valve. British Heart Journal, 31(3), 391.

    Google Scholar 

  159. Billiar, K. L., & Sacks, M. S. (2000). Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. Journal of Biomechanical Engineering, 122(1), 23–30.

    CAS  PubMed  Google Scholar 

  160. Christie, G. W., & Barratt-Boyes, B. G. (1995). Age-dependent changes in the radial stretch of human aortic valve leaflets determined by biaxial testing. Annals of Thoracic Surgery, 60(2 Suppl), S156–S158. discussion S159.

    CAS  PubMed  Google Scholar 

  161. Yap, C. H., Saikrishnan, N., Tamilselvan, G., Vasilyev, N., & Yoganathan, A. P. (2012). The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface. American Journal of Physiology. Heart and Circulatory Physiology, 303(6), H721–H731. doi:10.1152/ajpheart.00829.2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Wirrig, E. E., Hinton, R. B., & Yutzey, K. E. (2011). Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. Journal of Molecular and Cellular Cardiology, 50(3), 561–569. doi:10.1016/j.yjmcc.2010.12.005.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Cujec, B., & Pollick, C. (1988). Isolated thickening of one aortic cusp: preferential thickening of the noncoronary cusp. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 1(6), 430–432.

    CAS  Google Scholar 

  164. Back, M., Gasser, T. C., Michel, J. B., & Caligiuri, G. (2013). Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovascular Research. doi:10.1093/cvr/cvt040.

    PubMed Central  Google Scholar 

  165. Liu, G. R. SSQ. (2013). The finite element method—a practical course, 2nd edition. Elsevier (BH).

  166. Croft L. R., & Kaazempur Mofrad, M. R. (2010). Computational modeling of the aortic heart valves—computational modeling in biomechanics, Chapter 7. :221–252

  167. Liu G. R., & Trung, N. T. (2010). Smoothed finite element methods. CRC.

  168. He, Z. C., Liu, G. R., Zhong, Z. H., Zhang, G. Y., & Cheng, A. G. (2011). A coupled ES-FEM/BEM method for fluid-structure interaction problems. Engineering of Analysis and Boundary Elements, 35(1), 140–147. doi:10.1016/j.enganabound.2010.05.003.

    Google Scholar 

  169. Wang, S., Khoo, B. C., Liu, G. R., & Xu, G. X. (2013). An arbitrary Lagrangian-Eulerian gradient smoothing method (GSM/ALE) for interaction of fluid and a moving rigid body. Computers & Fluids, 71, 327–347. doi:10.1016/j.compfluid.2012.10.028.

    Google Scholar 

  170. Zhang, Z. Q., Yao, J. Y., & Liu, G. R. (2011). An immersed smoothed finite element method for fluid-structure interaction problems. International Journal of Computers Meth-Sing, 8(4), 747–757. doi:10.1142/S0219876211002794.

    Google Scholar 

  171. Pasta, S., Rinaudo, A., Luca, A., Pilato, M., Scardulla, C., Gleason, T. G., & Vorp, D. A. (2013). Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve. Journal of Biomechanics, 46(10), 1729–1738. doi:10.1016/j.jbiomech.2013.03.029.

    PubMed Central  PubMed  Google Scholar 

  172. Saber, N. R., Wood, N. B., Gosman, A. D., Merrifield, R. D., Yang, G. Z., Charrier, C. L., Gatehouse, P. D., & Firmin, D. N. (2003). Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Annals of Biomedical Engineering, 31(1), 42–52.

    PubMed  Google Scholar 

  173. Yao, J. Y., Liu, G. R., Narmoneva, D. A., Hinton, R. B., & Zhang, Z. Q. (2012). Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves. Computational Mechanics, 50(6), 789–804. doi:10.1007/s00466-012-0781-z.

    Google Scholar 

  174. Liu, G. R. (2009). Meshfree methods: moving beyond the finite element method. 2nd Edition. CRC.

  175. Wagenseil, J. E., & Mecham, R. P. (2009). Vascular extracellular matrix and arterial mechanics. Physiological Reviews, 89(3), 957–989. doi:10.1152/physrev.00041.2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Tsamis, A., Krawiec, J. T., & Vorp, D. A. (2013). Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. Journal of the Royal Society, Interface the Royal Society, 10(83), 20121004. doi:10.1098/rsif.2012.1004.

    Google Scholar 

  177. Sewell-Loftin, M. K., Brown, C. B., Baldwin, H. S., & Merryman, W. D. (2012). A novel technique for quantifying mouse heart valve leaflet stiffness with atomic force microscopy. The Journal of Heart Valve Disease, 21(4), 513–520.

    PubMed Central  PubMed  Google Scholar 

  178. Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., Erwin, J. P., 3rd, Guyton, R. A., O’Gara, P. T., Ruiz, C. E., Skubas, N. J., Sorajja, P., Sundt, T. M., 3rd, Thomas, J. D., Anderson, J. L., Halperin, J. L., Albert, N. M., Bozkurt, B., Brindis, R. G., Creager, M. A., Curtis, L. H., DeMets, D., Guyton, R. A., Hochman, J. S., Kovacs, R. J., Ohman, E. M., Pressler, S. J., Sellke, F. W., Shen, W. K., Stevenson, W. G., Yancy, C. W., American College of C, American College of Cardiology/American Heart A, & American Heart A. (2014). 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of Thoracic and Cardiovascular Surgery, 148(1), e1–e132. doi:10.1016/j.jtcvs.2014.05.014.

    PubMed  Google Scholar 

  179. Zoghbi, W. A., Enriquez-Sarano, M., Foster, E., Grayburn, P. A., Kraft, C. D., Levine, R. A., Nihoyannopoulos, P., Otto, C. M., Quinones, M. A., Rakowski, H., Stewart, W. J., Waggoner, A., & Weissman, N. J. (2003). Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 16(7), 777–802. doi:10.1016/S0894-7317(03)00335-3.

    Google Scholar 

  180. Baumgartner, H., Hung, J., Bermejo, J., Chambers, J. B., Evangelista, A., Griffin, B. P., Iung, B., Otto, C. M., Pellikka, P. A., & Quinones, M. (2009). Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 22(1), 1–23. doi:10.1016/j.echo.2008.11.029. quiz 101–102.

    Google Scholar 

  181. Gott, V. L., Alejo, D. E., & Cameron, D. E. (2003). Mechanical heart valves: 50 years of evolution. The Annals of Thoracic Surgery, 76(6), S2230–S2239.

    PubMed  Google Scholar 

  182. Gallegos, R. P. (2006). Selection of prosthetic heart valves. Current Treat Options Cardiovascular Medicine, 8(6), 443–452.

    Google Scholar 

  183. Sacks, M. S., Mirnajafi, A., Sun, W., & Schmidt, P. (2006). Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation. Expert Review of Medical Devices, 3(6), 817–834. doi:10.1586/17434440.3.6.817.

    CAS  PubMed  Google Scholar 

  184. Bailey, M. T., Pillarisetti, S., Xiao, H., & Vyavahare, N. R. (2003). Role of elastin in pathologic calcification of xenograft heart valves. Journal of Biomedical Materials Research. Part A, 66(1), 93–102. doi:10.1002/jbm.a.10543.

    PubMed  Google Scholar 

  185. Vyavahare, N., Ogle, M., Schoen, F. J., Zand, R., Gloeckner, D. C., Sacks, M., & Levy, R. J. (1999). Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. Journal of Biomedial Materials Research, 46(1), 44–50.

    CAS  Google Scholar 

  186. Vesely, I. (2005). Heart valve tissue engineering. Circulation Research, 97(8), 743–755. doi:10.1161/01.RES.0000185326.04010.9f.

    CAS  PubMed  Google Scholar 

  187. Svensson, L. G., Blackstone, E. H., & Cosgrove, D. M., 3rd. (2003). Surgical options in young adults with aortic valve disease. Current Problems in Cardiology, 28(7), 417–480. doi:10.1016/j.cpcardiol.2003.08.002.

    PubMed  Google Scholar 

  188. Nowrangi, S. K., Connolly, H. M., Freeman, W. K., & Click, R. L. (2001). Impact of intraoperative transesophageal echocardiography among patients undergoing aortic valve replacement for aortic stenosis. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 14(9), 863–866.

    CAS  Google Scholar 

  189. Svensson, L. G., Deglurkar, I., Ung, J., Pettersson, G., Gillinov, A. M., D’Agostino, R. S., & Lytle, B. W. (2007). Aortic valve repair and root preservation by remodeling, reimplantation, and tailoring: technical aspects and early outcome. Journal of Cardiac Surgery, 22(6), 473–479. doi:10.1111/j.1540-8191.2007.00467.x.

    PubMed  Google Scholar 

  190. Svensson, L. G. (2008). Aortic valve stenosis and regurgitation: an overview of management. The Journal of Cardiovascular Surgery, 49(2), 297–303.

    CAS  PubMed  Google Scholar 

  191. Piazza, N., Bleiziffer, S., Brockmann, G., Hendrick, R., Deutsch, M. A., Opitz, A., Mazzitelli, D., Tassani-Prell, P., Schreiber, C., & Lange, R. (2011). Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve: from concept to clinical application and evaluation (part 1). JACC. Cardiovascular Interventions, 4(7), 721–732. doi:10.1016/j.jcin.2011.03.016.

    PubMed  Google Scholar 

  192. Hinton, R. B. (2014). Advances in the treatment of aortic valve disease: is it time for companion diagnostics? Current Opinion in Pediatrics. doi:10.1097/MOP.0000000000000137.

    PubMed  Google Scholar 

  193. Piazza, N., Bleiziffer, S., Brockmann, G., Hendrick, R., Deutsch, M. A., Opitz, A., Mazzitelli, D., Tassani-Prell, P., Schreiber, C., & Lange, R. (2011). Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve: from concept to clinical application and evaluation (part 2). JACC. Cardiovascular Interventions, 4(7), 733–742. doi:10.1016/j.jcin.2011.05.007.

    PubMed  Google Scholar 

  194. Zoghbi, W. A., Chambers, J. B., Dumesnil, J. G., Foster, E., Gottdiener, J. S., Grayburn, P. A., Khandheria, B. K., Levine, R. A., Marx, G. R., Miller, F. A., Jr., Nakatani, S., Quinones, M. A., Rakowski, H., Rodriguez, L. L., Swaminathan, M., Waggoner, A. D., Weissman, N. J., & Zabalgoitia, M. (2009). Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 22(9), 975–1014. doi:10.1016/j.echo.2009.07.013. quiz 1082–1014.

    Google Scholar 

  195. Sugeng, L., Shernan, S. K., Weinert, L., Shook, D., Raman, J., Jeevanandam, V., DuPont, F., Fox, J., Mor-Avi, V., & Lang, R. M. (2008). Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 21(12), 1347–1354. doi:10.1016/j.echo.2008.09.006.

    Google Scholar 

  196. Davies, R. R., Goldstein, L. J., Coady, M. A., Tittle, S. L., Rizzo, J. A., Kopf, G. S., & Elefteriades, J. A. (2002). Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. The Annals of Thoracic Surgery, 73(1), 17–27. discussion 27–18.

    PubMed  Google Scholar 

  197. Loeys, B. L., Schwarze, U., Holm, T., Callewaert, B. L., Thomas, G. H., Pannu, H., De Backer, J. F., Oswald, G. L., Symoens, S., Manouvrier, S., Roberts, A. E., Faravelli, F., Greco, M. A., Pyeritz, R. E., Milewicz, D. M., Coucke, P. J., Cameron, D. E., Braverman, A. C., Byers, P. H., De Paepe, A. M., & Dietz, H. C. (2006). Aneurysm syndromes caused by mutations in the TGF-beta receptor. New England Journal of Medicine, 355(8), 788–798. doi:10.1056/NEJMoa055695.

    CAS  PubMed  Google Scholar 

  198. Pannu, H., Tran-Fadulu, V., Papke, C. L., Scherer, S., Liu, Y., Presley, C., Guo, D., Estrera, A. L., Safi, H. J., Brasier, A. R., Vick, G. W., Marian, A. J., Raman, C. S., Buja, L. M., & Milewicz, D. M. (2007). MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Human Molecular Genetics, 16(20), 2453–2462. doi:10.1093/hmg/ddm201.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Shores, J., Berger, K. R., Murphy, E. A., & Pyeritz, R. E. (1994). Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. New England Journal of Medicine, 330(19), 1335–1341. doi:10.1056/NEJM199405123301902.

    CAS  PubMed  Google Scholar 

  200. Brooke, B. S., Habashi, J. P., Judge, D. P., Patel, N., Loeys, B., & Dietz, H. C., 3rd. (2008). Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. New England Journal of Medicine, 358(26), 2787–2795. doi:10.1056/NEJMoa0706585.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Svensson, L. G., Longoria, J., Kimmel, W. A., & Nadolny, E. (2000). Management of aortic valve disease during aortic surgery. The Annals of Thoracic Surgery, 69(3), 778–783. discussion 783–774.

    CAS  PubMed  Google Scholar 

  202. Zehr, K. J., Orszulak, T. A., Mullany, C. J., Matloobi, A., Daly, R. C., Dearani, J. A., Sundt, T. M., 3rd, Puga, F. J., Danielson, G. K., & Schaff, H. V. (2004). Surgery for aneurysms of the aortic root: a 30-year experience. Circulation, 110(11), 1364–1371. doi:10.1161/01.CIR.0000141593.05085.87.

    PubMed  Google Scholar 

  203. David, T. E., Feindel, C. M., Webb, G. D., Colman, J. M., Armstrong, S., & Maganti, M. (2007). Aortic valve preservation in patients with aortic root aneurysm: results of the reimplantation technique. The Annals of Thoracic Surgery, 83(2), S732–S735. doi:10.1016/j.athoracsur.2006.10.080. discussion S785-790.

    PubMed  Google Scholar 

  204. Patel, N. D., Weiss, E. S., Alejo, D. E., Nwakanma, L. U., Williams, J. A., Dietz, H. C., Spevak, P. J., Gott, V. L., Vricella, L. A., & Cameron, D. E. (2008). Aortic root operations for Marfan syndrome: a comparison of the Bentall and valve-sparing procedures. The Annals of Thoracic Surgery, 85(6), 2003–2010. doi:10.1016/j.athoracsur.2008.01.032. discussion 2010–2001.

    PubMed  Google Scholar 

  205. Greenberg, R. K., Haddad, F., Svensson, L., O’Neill, S., Walker, E., Lyden, S. P., Clair, D., & Lytle, B. (2005). Hybrid approaches to thoracic aortic aneurysms: the role of endovascular elephant trunk completion. Circulation, 112(17), 2619–2626. doi:10.1161/CIRCULATIONAHA.105.552398.

    PubMed  Google Scholar 

  206. Stephens, E. H., Kearney, D. L., & Grande-Allen, K. J. (2012). Insight into pathologic abnormalities in congenital semilunar valve disease based on advances in understanding normal valve microstructure and extracellular matrix. Cardiovascular Pathology: The Official Journal of the Society for Cardiovascular Pathology, 21(1), 46–58. doi:10.1016/j.carpath.2011.01.002.

    Google Scholar 

  207. Stypmann, J., Glaser, K., Roth, W., Tobin, D. J., Petermann, I., Matthias, R., Monnig, G., Haverkamp, W., Breithardt, G., Schmahl, W., Peters, C., & Reinheckel, T. (2002). Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6234–6239. doi:10.1073/pnas.092637699.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Qayyum, S. R., Webb, S., Anderson, R. H., Verbeek, F. J., Brown, N. A., & Richardson, M. K. (2001). Septation and valvar formation in the outflow tract of the embryonic chick heart. Anatomical Record, 264(3), 273–283.

    CAS  PubMed  Google Scholar 

  209. Chen, J. H., & Simmons, C. A. (2011). Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circulation Research, 108(12), 1510–1524. doi:10.1161/CIRCRESAHA.110.234237.

    CAS  PubMed  Google Scholar 

  210. Schoen, F. J. (2012). Mechanisms of function and disease of natural and replacement heart valves. Annual Review of Pathology, 7, 161–183. doi:10.1146/annurev-pathol-011110-130257.

    CAS  PubMed  Google Scholar 

  211. Bashur, C. A., Venkataraman, L., & Ramamurthi, A. (2012). Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. Tissue Engineering. Part B, Reviews, 18(3), 203–217. doi:10.1089/ten.TEB.2011.0521.

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Pasquali-Ronchetti, I., Baccarani-Contri, M., Young, R. D., Vogel, A., Steinmann, B., & Royce, P. M. (1994). Ultrastructural analysis of skin and aorta from a patient with Menkes disease. Experimental and Molecular Pathology, 61(1), 36–57. doi:10.1006/exmp.1994.1024.

    CAS  PubMed  Google Scholar 

  213. Schildmeyer, L. A., Braun, R., Taffet, G., Debiasi, M., Burns, A. E., Bradley, A., & Schwartz, R. J. (2000). Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB Journal, 14(14), 2213–2220. doi:10.1096/fj.99-0927com.

    CAS  PubMed  Google Scholar 

  214. Zhou, H. M., Weskamp, G., Chesneau, V., Sahin, U., Vortkamp, A., Horiuchi, K., Chiusaroli, R., Hahn, R., Wilkes, D., Fisher, P., Baron, R., Manova, K., Basson, C. T., Hempstead, B., & Blobel, C. P. (2004). Essential role for ADAM19 in cardiovascular morphogenesis. Molecular and Cellular Biology, 24(1), 96–104.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Dupuis, L. E., McCulloch, D. R., McGarity, J. D., Bahan, A., Wessels, A., Weber, D., Diminich, A. M., Nelson, C. M., Apte, S. S., & Kern, C. B. (2011). Altered versican cleavage in ADAMTS5 deficient mice; a novel etiology of myxomatous valve disease. Developmental Biology, 357(1), 152–164. doi:10.1016/j.ydbio.2011.06.041.

    CAS  PubMed  Google Scholar 

  216. Dupuis, L. E., Osinska, H., Weinstein, M. B., Hinton, R. B., & Kern, C. B. (2013). Insufficient versican cleavage and Smad2 phosphorylation results in bicuspid aortic and pulmonary valves. Journal of Molecular and Cellular Cardiology, 60, 50–59. doi:10.1016/j.yjmcc.2013.03.010.

    CAS  PubMed  Google Scholar 

  217. Tanaka, K., Sata, M., Fukuda, D., Suematsu, Y., Motomura, N., Takamoto, S., Hirata, Y., & Nagai, R. (2005). Age-associated aortic stenosis in apolipoprotein E-deficient mice. Journal of the American College of Cardiology, 46(1), 134–141. doi:10.1016/j.jacc.2005.03.058.

    CAS  PubMed  Google Scholar 

  218. Aikawa, E., Nahrendorf, M., Sosnovik, D., Lok, V. M., Jaffer, F. A., Aikawa, M., & Weissleder, R. (2007). Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation, 115(3), 377–386. doi:10.1161/CIRCULATIONAHA.106.654913.

    CAS  PubMed  Google Scholar 

  219. Drolet, M. C., Roussel, E., Deshaies, Y., Couet, J., & Arsenault, M. (2006). A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6J mice. Journal of the American College of Cardiology, 47(4), 850–855. doi:10.1016/j.jacc.2005.09.049.

    CAS  PubMed  Google Scholar 

  220. Yoshioka, M., Yuasa, S., Matsumura, K., Kimura, K., Shiomi, T., Kimura, N., Shukunami, C., Okada, Y., Mukai, M., Shin, H., Yozu, R., Sata, M., Ogawa, S., Hiraki, Y., & Fukuda, K. (2006). Chondromodulin-I maintains cardiac valvular function by preventing angiogenesis. Nature Medicine, 12(10), 1151–1159. doi:10.1038/nm1476.

    CAS  PubMed  Google Scholar 

  221. Rahkonen, O., Su, M., Hakovirta, H., Koskivirta, I., Hormuzdi, S. G., Vuorio, E., Bornstein, P., & Penttinen, R. (2004). Mice with a deletion in the first intron of the Col1a1 gene develop age-dependent aortic dissection and rupture. Circulation Research, 94(1), 83–90. doi:10.1161/01.RES.0000108263.74520.15.

    CAS  PubMed  Google Scholar 

  222. Liu, X., Wu, H., Byrne, M., Krane, S., & Jaenisch, R. (1997). Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 1852–1856.

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Smith, L. B., Hadoke, P. W., Dyer, E., Denvir, M. A., Brownstein, D., Miller, E., Nelson, N., Wells, S., Cheeseman, M., & Greenfield, A. (2011). Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers-Danlos syndrome. Cardiovascular Research, 90(1), 182–190. doi:10.1093/cvr/cvq356.

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Sukhova, G. K., Wang, B., Libby, P., Pan, J. H., Zhang, Y., Grubb, A., Fang, K., Chapman, H. A., & Shi, G. P. (2005). Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circulation Research, 96(3), 368–375. doi:10.1161/01.RES.0000155964.34150.F7.

    CAS  PubMed  Google Scholar 

  225. Barrick, C. J., Roberts, R. B., Rojas, M., Rajamannan, N. M., Suitt, C. B., O’Brien, K. D., Smyth, S. S., & Threadgill, D. W. (2009). Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6 J but not 129S1/SvImJ mice. American Journal of Physiology. Heart and Circulatory Physiology, 297(1), H65–H75. doi:10.1152/ajpheart.00866.2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Zacchigna, L., Vecchione, C., Notte, A., Cordenonsi, M., Dupont, S., Maretto, S., Cifelli, G., Ferrari, A., Maffei, A., Fabbro, C., Braghetta, P., Marino, G., Selvetella, G., Aretini, A., Colonnese, C., Bettarini, U., Russo, G., Soligo, S., Adorno, M., Bonaldo, P., Volpin, D., Piccolo, S., Lembo, G., & Bressan, G. M. (2006). Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell, 124(5), 929–942. doi:10.1016/j.cell.2005.12.035.

    CAS  PubMed  Google Scholar 

  227. Neptune, E. R., Frischmeyer, P. A., Arking, D. E., Myers, L., Bunton, T. E., Gayraud, B., Ramirez, F., Sakai, L. Y., & Dietz, H. C. (2003). Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nature Genetics, 33(3), 407–411. doi:10.1038/ng1116.

    CAS  PubMed  Google Scholar 

  228. Judge, D. P., Biery, N. J., Keene, D. R., Geubtner, J., Myers, L., Huso, D. L., Sakai, L. Y., & Dietz, H. C. (2004). Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. The Journal of Clinical Investigation, 114(2), 172–181. doi:10.1172/JCI20641.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Misra, C., Sachan, N., McNally, C. R., Koenig, S. N., Nichols, H. A., Guggilam, A., Lucchesi, P. A., Pu, W. T., Srivastava, D., & Garg, V. (2012). Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genetics, 8(5), e1002690. doi:10.1371/journal.pgen.1002690.

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Laforest, B., Andelfinger, G., & Nemer, M. (2011). Loss of Gata5 in mice leads to bicuspid aortic valve. The Journal of Clinical Investigation, 121(7), 2876–2887. doi:10.1172/JCI44555.

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Laforest, B., & Nemer, M. (2011). GATA5 interacts with GATA4 and GATA6 in outflow tract development. Developmental Biology, 358(2), 368–378. doi:10.1016/j.ydbio.2011.07.037.

    CAS  PubMed  Google Scholar 

  232. Baldo, G., Wu, S., Howe, R. A., Ramamoothy, M., Knutsen, R. H., Fang, J., Mecham, R. P., Liu, Y., Wu, X., Atkinson, J. P., & Ponder, K. P. (2011). Pathogenesis of aortic dilatation in mucopolysaccharidosis VII mice may involve complement activation. Molecular Genetics and Metabolism, 104(4), 608–619. doi:10.1016/j.ymgme.2011.08.018.

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Iwamoto, R., Yamazaki, S., Asakura, M., Takashima, S., Hasuwa, H., Miyado, K., Adachi, S., Kitakaze, M., Hashimoto, K., Raab, G., Nanba, D., Higashiyama, S., Hori, M., Klagsbrun, M., & Mekada, E. (2003). Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3221–3226. doi:10.1073/pnas.0537588100.

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Sassan HajMohammadi, J. S., Silvio, L., Palac, R. T., & Shworak, N. W. (2003). Mice with reduced anticoagulant heparan sulfate develop Myxomatous valvular degeneration. Annual Conference, Arterioscler Thrombosis Vascular Biology, 23(5), a-2.

    Google Scholar 

  235. Makki, N., & Capecchi, M. R. (2012). Cardiovascular defects in a mouse model of HOXA1 syndrome. Human Molecular Genetics, 21(1), 26–31. doi:10.1093/hmg/ddr434.

    PubMed Central  PubMed  Google Scholar 

  236. Chowdhury, B., Hemming, R., Hombach-Klonisch, S., Flamion, B., & Triggs-Raine, B. (2013). Murine hyaluronidase 2 deficiency results in extracellular hyaluronan accumulation and severe cardiopulmonary dysfunction. Journal of Biological Chemistry, 288(1), 520–528. doi:10.1074/jbc.M112.393629.

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Ma, X., Tittiger, M., Knutsen, R. H., Kovacs, A., Schaller, L., Mecham, R. P., & Ponder, K. P. (2008). Upregulation of elastase proteins results in aortic dilatation in mucopolysaccharidosis I mice. Molecular Genetics and Metabolism, 94(3), 298–304. doi:10.1016/j.ymgme.2008.03.018.

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Jordan, M. C., Zheng, Y., Ryazantsev, S., Rozengurt, N., Roos, K. P., & Neufeld, E. F. (2005). Cardiac manifestations in the mouse model of mucopolysaccharidosis I. Molecular Genetics and Metabolism, 86(1–2), 233–243. doi:10.1016/j.ymgme.2005.05.003.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Arnold, T. D., Zang, K., & Vallejo-Illarramendi, A. (2013). Deletion of integrin-linked kinase from neural crest cells in mice results in aortic aneurysms and embryonic lethality. Disease Models & Mechanisms, 6(5), 1205–1212. doi:10.1242/dmm.011866.

    CAS  Google Scholar 

  240. Isoda, K., Matsuki, T., Kondo, H., Iwakura, Y., & Ohsuzu, F. (2010). Deficiency of interleukin-1 receptor antagonist induces aortic valve disease in BALB/c mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(4), 708–715. doi:10.1161/ATVBAHA.109.201749.

    CAS  PubMed  Google Scholar 

  241. High, F. A., Jain, R., Stoller, J. Z., Antonucci, N. B., Lu, M. M., Loomes, K. M., Kaestner, K. H., Pear, W. S., & Epstein, J. A. (2009). Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. Journal of Clinical Investigation, 119(7), 1986–1996. doi:10.1172/JCI38922.

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Matsumoto, Y., Adams, V., Jacob, S., Mangner, N., Schuler, G., & Linke, A. (2010). Regular exercise training prevents aortic valve disease in low-density lipoprotein-receptor-deficient mice. Circulation, 121(6), 759–767. doi:10.1161/CIRCULATIONAHA.109.892224.

    CAS  PubMed  Google Scholar 

  243. Weiss, R. M., Ohashi, M., Miller, J. D., Young, S. G., & Heistad, D. D. (2006). Calcific aortic valve stenosis in old hypercholesterolemic mice. Circulation, 114(19), 2065–2069. doi:10.1161/CIRCULATIONAHA.106.634139.

    PubMed  Google Scholar 

  244. Varga, R., Eriksson, M., Erdos, M. R., Olive, M., Harten, I., Kolodgie, F., Capell, B. C., Cheng, J., Faddah, D., Perkins, S., Avallone, H., San, H., Qu, X., Ganesh, S., Gordon, L. B., Virmani, R., Wight, T. N., Nabel, E. G., & Collins, F. S. (2006). Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3250–3255. doi:10.1073/pnas.0600012103.

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Galvin, K. M., Donovan, M. J., Lynch, C. A., Meyer, R. I., Paul, R. J., Lorenz, J. N., Fairchild-Huntress, V., Dixon, K. L., Dunmore, J. H., Gimbrone, M. A., Jr., Falb, D., & Huszar, D. (2000). A role for smad6 in development and homeostasis of the cardiovascular system. Nature Genetics, 24(2), 171–174. doi:10.1038/72835.

    CAS  PubMed  Google Scholar 

  246. Luo, G., Ducy, P., McKee, M. D., Pinero, G. J., Loyer, E., Behringer, R. R., & Karsenty, G. (1997). Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 386(6620), 78–81. doi:10.1038/386078a0.

    CAS  PubMed  Google Scholar 

  247. Kuang, S. Q., Kwartler, C. S., Byanova, K. L., Pham, J., Gong, L., Prakash, S. K., Huang, J., Kamm, K. E., Stull, J. T., Sweeney, H. L., & Milewicz, D. M. (2012). Rare, nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and phenotype of smooth muscle cells. Circulation Research, 110(11), 1411–1422. doi:10.1161/CIRCRESAHA.111.261743.

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Biben, C., Weber, R., Kesteven, S., Stanley, E., McDonald, L., Elliott, D. A., Barnett, L., Koentgen, F., Robb, L., Feneley, M., & Harvey, R. P. (2000). Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circulation Research, 87(10), 888–895.

    CAS  PubMed  Google Scholar 

  249. Lee, T. C., Zhao, Y. D., Courtman, D. W., & Stewart, D. J. (2000). Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation, 101(20), 2345–2348.

    CAS  PubMed  Google Scholar 

  250. Bosse, K., Hans, C. P., Zhao, N., Koenig, S. N., Huang, N., Guggilam, A., LaHaye, S., Tao, G., Lucchesi, P. A., Lincoln, J., Lilly, B., & Garg, V. (2013). Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. Journal of Molecular and Cellular Cardiology, 60, 27–35. doi:10.1016/j.yjmcc.2013.04.001.

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Nigam, V., & Srivastava, D. (2009). Notch1 represses osteogenic pathways in aortic valve cells. Journal of Molecular and Cellular Cardiology, 47(6), 828–834. doi:10.1016/j.yjmcc.2009.08.008.

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Jain, R., Engleka, K. A., Rentschler, S. L., Manderfield, L. J., Li, L., Yuan, L., & Epstein, J. A. (2011). Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. The Journal of Clinical Investigation, 121(1), 422–430. doi:10.1172/JCI44244.

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Kurbegovic, A., Cote, O., Couillard, M., Ward, C. J., Harris, P. C., & Trudel, M. (2010). Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Human Molecular Genetics, 19(7), 1174–1189. doi:10.1093/hmg/ddp588.

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Cheng, C. H., Kikuchi, T., Chen, Y. H., Sabbagha, N. G., Lee, Y. C., Pan, H. J., Chang, C., & Chen, Y. T. (2009). Mutations in the SLC2A10 gene cause arterial abnormalities in mice. Cardiovascular Research, 81(2), 381–388. doi:10.1093/cvr/cvn319.

    CAS  PubMed  Google Scholar 

  255. Peacock, J. D., Levay, A. K., Gillaspie, D. B., Tao, G., & Lincoln, J. (2010). Reduced sox9 function promotes heart valve calcification phenotypes in vivo. Circulation Research, 106(4), 712–719. doi:10.1161/CIRCRESAHA.109.213702.

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Sanford, L. P., Ormsby, I., Gittenberger-de Groot, A. C., Sariola, H., Friedman, R., Boivin, G. P., Cardell, E. L., & Doetschman, T. (1997). TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 124(13), 2659–2670.

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Chakraborty, S., Wirrig, E. E., Hinton, R. B., Merrill, W. H., Spicer, D. B., & Yutzey, K. E. (2010). Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Developmental Biology, 347(1), 167–179. doi:10.1016/j.ydbio.2010.08.021.

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Bonachea, E. M., Zender, G., White, P., Corsmeier, D., Newsom, D., Fitzgerald-Butt, S., Garg, V., & McBride, K. L. (2014). Use of a targeted, combinatorial next-generation sequencing approach for the study of bicuspid aortic valve. BMC Medical Genomics, 7, 56. doi:10.1186/1755-8794-7-56.

    PubMed Central  PubMed  Google Scholar 

  259. Bonachea, E. M., Chang, S. W., Zender, G., LaHaye, S., Fitzgerald-Butt, S., McBride, K. L., & Garg, V. (2014). Rare GATA5 sequence variants identified in individuals with bicuspid aortic valve. Pediatric Research, 76(2), 211–216. doi:10.1038/pr.2014.67.

    CAS  PubMed  Google Scholar 

  260. Ankeny, R. F., Thourani, V. H., Weiss, D., Vega, J. D., Taylor, W. R., Nerem, R. M., & Jo, H. (2011). Preferential activation of SMAD1/5/8 on the fibrosa endothelium in calcified human aortic valves–association with low BMP antagonists and SMAD6. PLoS ONE, 6(6), e20969. doi:10.1371/journal.pone.0020969.

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Caira, F. C., Stock, S. R., Gleason, T. G., McGee, E. C., Huang, J., Bonow, R. O., Spelsberg, T. C., McCarthy, P. M., Rahimtoola, S. H., & Rajamannan, N. M. (2006). Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. Journal of the American College of Cardiology, 47(8), 1707–1712. doi:10.1016/j.jacc.2006.02.040.

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Rajamannan, N. M., Subramaniam, M., Caira, F., Stock, S. R., & Spelsberg, T. C. (2005). Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation, 112(9 Suppl), I229–I234. doi:10.1161/01.CIRCULATIONAHA.104.524306.

    PubMed Central  PubMed  Google Scholar 

  263. Alfieri, C. M., Cheek, J., Chakraborty, S., & Yutzey, K. E. (2010). Wnt signaling in heart valve development and osteogenic gene induction. Developmental Biology, 338(2), 127–135. doi:10.1016/j.ydbio.2009.11.030.

    CAS  PubMed Central  PubMed  Google Scholar 

  264. O’Brien, K. D. (2006). Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arteriosclerosis, Thrombosis, and Vascular Biology, 26(8), 1721–1728. doi:10.1161/01.ATV.0000227513.13697.ac.

    PubMed  Google Scholar 

  265. Holm, T. M., Habashi, J. P., Doyle, J. J., Bedja, D., Chen, Y., van Erp, C., Lindsay, M. E., Kim, D., Schoenhoff, F., Cohn, R. D., Loeys, B. L., Thomas, C. J., Patnaik, S., Marugan, J. J., Judge, D. P., & Dietz, H. C. (2011). Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science, 332(6027), 358–361. doi:10.1126/science.1192149.

    CAS  PubMed Central  PubMed  Google Scholar 

  266. Padang, R., Bagnall, R. D., Richmond, D. R., Bannon, P. G., & Semsarian, C. (2012). Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. Journal of Molecular and Cellular Cardiology, 53(2), 277–281. doi:10.1016/j.yjmcc.2012.05.009.

    CAS  PubMed  Google Scholar 

  267. Aicher, D., Urbich, C., Zeiher, A., Dimmeler, S., & Schafers, H. J. (2007). Endothelial nitric oxide synthase in bicuspid aortic valve disease. Annals of Thoracic Surgery, 83(4), 1290–1294. doi:10.1016/j.athoracsur.2006.11.086.

    PubMed  Google Scholar 

  268. Girdauskas, E., Schulz, S., Borger, M. A., Mierzwa, M., & Kuntze, T. (2011). Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Annals of Thoracic Surgery, 91(5), e70–e71. doi:10.1016/j.athoracsur.2010.12.060.

    PubMed  Google Scholar 

  269. Kappetein, A. P., Gittenberger-de Groot, A. C., Zwinderman, A. H., Rohmer, J., Poelmann, R. E., & Huysmans, H. A. (1991). The neural crest as a possible pathogenetic factor in coarctation of the aorta and bicuspid aortic valve. Journal of Thoracic and Cardiovascular Surgery, 102(6), 830–836.

    CAS  PubMed  Google Scholar 

  270. Kyndt, F., Gueffet, J. P., Probst, V., Jaafar, P., Legendre, A., Le Bouffant, F., Toquet, C., Roy, E., McGregor, L., Lynch, S. A., Newbury-Ecob, R., Tran, V., Young, I., Trochu, J. N., Le Marec, H., & Schott, J. J. (2007). Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation, 115(1), 40–49. doi:10.1161/CIRCULATIONAHA.106.622621.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andrew Stout and K. Jane Grande-Allen, PhD for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Hinton.

Additional information

Associate Editor Daniel P. Judge oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, V.K., Godby, R.C., Liu, G.R. et al. Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy. J. of Cardiovasc. Trans. Res. 7, 823–846 (2014). https://doi.org/10.1007/s12265-014-9602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9602-4

Keywords

Navigation