Skip to main content

Advertisement

Log in

Direct Reprogramming of Mouse Fibroblasts into Cardiac Myocytes

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The potency of specific transcription factors as cell fate determinants was first demonstrated by the discovery of MyoD, a master gene for skeletal muscle transdifferentiation. More recently, the induction of pluripotency in somatic cells using a combination of stem cell-specific transcription factors has been reported. That elegant study altered the approach to regenerative medicine and inspired new strategies for generating specific cell types by introducing combinations of lineage-specific transcription factors. A diverse range of cell types, such as pancreatic β-cells, neurons, chondrocytes, and hepatocytes, can be induced from heterologous cells using lineage-specific reprogramming factors. Furthermore, functional cardiomyocytes can be generated directly from differentiated somatic cells using several combinations of cardiac-enriched defined factors in the mouse. The present article reviews the pioneering and recent studies in cellular reprogramming and discusses the perspectives and challenges of direct cardiac reprogramming in regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  2. Song, M., Paul, S., Lim, H., Dayem, A. A., & Cho, S. G. (2012). Induced pluripotent stem cell research: a revolutionary approach to face the challenges in drug screening. Archives of Pharmacal Research, 35, 245–260.

    Article  PubMed  CAS  Google Scholar 

  3. Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., et al. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 109, E1848–E1857.

    Article  PubMed  CAS  Google Scholar 

  4. Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8, 228–240.

    Article  PubMed  CAS  Google Scholar 

  5. Dubois, N. C., Craft, A. M., Sharma, P., Elliott, D. A., Stanley, E. G., Elefanty, A. G., et al. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 29, 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  6. Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489, 322–325.

    Article  PubMed  CAS  Google Scholar 

  7. Han, D. W., Tapia, N., Hermann, A., Hemmer, K., Hoing, S., Arauzo-Bravo, M. J., et al. (2012). Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell, 10, 465–472.

    Article  PubMed  CAS  Google Scholar 

  8. Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., et al. (2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 475, 386–389.

    Article  PubMed  CAS  Google Scholar 

  9. Marro, S., Pang, Z. P., Yang, N., Tsai, M. C., Qu, K., Chang, H. Y., et al. (2011). Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell, 9, 374–382.

    Article  PubMed  CAS  Google Scholar 

  10. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  11. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627–632.

    Article  PubMed  CAS  Google Scholar 

  12. Hiramatsu, K., Sasagawa, S., Outani, H., Nakagawa, K., Yoshikawa, H., & Tsumaki, N. (2011). Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. Journal of Clinical Investigation, 121, 640–657.

    Article  PubMed  CAS  Google Scholar 

  13. Sekiya, S., & Suzuki, A. (2011). Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature, 475, 390–393.

    Article  PubMed  CAS  Google Scholar 

  14. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386.

    Article  PubMed  CAS  Google Scholar 

  15. Efe, J. A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13, 215–222.

    Article  PubMed  CAS  Google Scholar 

  16. Jayawardena, T. M., Egemnazarov, B., Finch, E. A., Zhang, L., Payne, J. A., Pandya, K., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, 110, 1465–1473.

    Article  PubMed  CAS  Google Scholar 

  17. Protze, S., Khattak, S., Poulet, C., Lindemann, D., Tanaka, E. M., & Ravens, U. (2012). A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. Journal of Molecular and Cellular Cardiology, 53, 323–332.

    Article  PubMed  CAS  Google Scholar 

  18. Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485, 599–604.

    Article  PubMed  CAS  Google Scholar 

  19. Inagawa, K., Miyamoto, K., Yamakawa, H., Muraoka, N., Sadahiro, T., Umei, T., et al. (2012). Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circulation Research. doi:10.1161/CIRCRESAHA.112.271148.

  20. Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 485, 593–598.

    Article  PubMed  CAS  Google Scholar 

  21. Berkes, C. A., & Tapscott, S. J. (2005). MyoD and the transcriptional control of myogenesis. Seminars in Cell & Developmental Biology, 16, 585–595.

    Article  CAS  Google Scholar 

  22. Tapscott, S. J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 132, 2685–2695.

    Article  PubMed  CAS  Google Scholar 

  23. Constantinides, P. G., Jones, P. A., & Gevers, W. (1977). Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature, 267, 364–366.

    Article  PubMed  CAS  Google Scholar 

  24. Taylor, S. M., & Jones, P. A. (1979). Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17, 771–779.

    Article  PubMed  CAS  Google Scholar 

  25. Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51, 987–1000.

    Article  PubMed  CAS  Google Scholar 

  26. Weintraub, H., Tapscott, S. J., Davis, R. L., Thayer, M. J., Adam, M. A., Lassar, A. B., et al. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America, 86, 5434–5438.

    Article  PubMed  CAS  Google Scholar 

  27. Choi, J., Costa, M. L., Mermelstein, C. S., Chagas, C., Holtzer, S., & Holtzer, H. (1990). MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proceedings of the National Academy of Sciences of the United States of America, 87, 7988–7992.

    Article  PubMed  CAS  Google Scholar 

  28. Visvader, J. E., Elefanty, A. G., Strasser, A., & Adams, J. M. (1992). GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO Journal, 11, 4557–4564.

    PubMed  CAS  Google Scholar 

  29. Heyworth, C., Pearson, S., May, G., & Enver, T. (2002). Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO Journal, 21, 3770–3781.

    Article  PubMed  CAS  Google Scholar 

  30. Xie, H., Ye, M., Feng, R., & Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell, 117, 663–676.

    Article  PubMed  CAS  Google Scholar 

  31. Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., & Graf, T. (2006). Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity, 25, 731–744.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, P., Iwasaki-Arai, J., Iwasaki, H., Fenyus, M. L., Dayaram, T., Owens, B. M., et al. (2004). Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity, 21, 853–863.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  PubMed  CAS  Google Scholar 

  34. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  PubMed  CAS  Google Scholar 

  35. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953.

    Article  PubMed  CAS  Google Scholar 

  36. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70.

    Article  PubMed  CAS  Google Scholar 

  37. Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2, 10–12.

    Article  PubMed  CAS  Google Scholar 

  38. Stadtfeld, M., Maherali, N., Breault, D. T., & Hochedlinger, K. (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2, 230–240.

    Article  PubMed  CAS  Google Scholar 

  39. Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3, 595–605.

    Article  PubMed  CAS  Google Scholar 

  40. Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476, 220–223.

    PubMed  CAS  Google Scholar 

  41. Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 2527–2532.

    Article  PubMed  CAS  Google Scholar 

  42. Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., et al. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 108, 10343–10348.

    Article  PubMed  CAS  Google Scholar 

  43. Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476, 224–227.

    Article  PubMed  CAS  Google Scholar 

  44. Son, E. Y., Ichida, J. K., Wainger, B. J., Toma, J. S., Rafuse, V. F., Woolf, C. J., et al. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell, 9, 205–218.

    Article  PubMed  CAS  Google Scholar 

  45. Kim, J., Su, S. C., Wang, H., Cheng, A. W., Cassady, J. P., Lodato, M. A., et al. (2011). Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell, 9, 413–419.

    Article  PubMed  CAS  Google Scholar 

  46. Zhou, Q., Law, A. C., Rajagopal, J., Anderson, W. J., Gray, P. A., & Melton, D. A. (2007). A multipotent progenitor domain guides pancreatic organogenesis. Developmental Cell, 13, 103–114.

    Article  PubMed  CAS  Google Scholar 

  47. Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16, 233–244.

    Article  PubMed  CAS  Google Scholar 

  48. Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: friend or foe? American Journal of Physiology - Heart and Circulatory Physiology, 291, H1015–H1026.

    Article  PubMed  CAS  Google Scholar 

  49. Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65, 40–51.

    Article  PubMed  CAS  Google Scholar 

  50. Weber, K. T., & Brilla, C. G. (1991). Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation, 83, 1849–1865.

    Article  PubMed  CAS  Google Scholar 

  51. Ieda, M., Kanazawa, H., Kimura, K., Hattori, F., Ieda, Y., Taniguchi, M., et al. (2007). Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Natural Medicines, 13, 604–612.

    Article  CAS  Google Scholar 

  52. Li, B., Carey, M., & Workman, J. L. (2007). The role of chromatin during transcription. Cell, 128, 707–719.

    Article  PubMed  CAS  Google Scholar 

  53. Bu, L., Jiang, X., Martin-Puig, S., Caron, L., Zhu, S., Shao, Y., et al. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460, 113–117.

    Article  PubMed  CAS  Google Scholar 

  54. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.

    Article  PubMed  CAS  Google Scholar 

  55. Bondue, A., Lapouge, G., Paulissen, C., Semeraro, C., Iacovino, M., Kyba, M., et al. (2008). Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell, 3, 69–84.

    Article  PubMed  CAS  Google Scholar 

  56. Lindsley, R. C., Gill, J. G., Murphy, T. L., Langer, E. M., Cai, M., Mashayekhi, M., et al. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell, 3, 55–68.

    Article  PubMed  CAS  Google Scholar 

  57. Wu, S. M. (2008). Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell, 3, 1–2.

    Article  PubMed  CAS  Google Scholar 

  58. Chen, J. X., Krane, M., Deutsch, M. A., Wang, L., Rav-Acha, M., Gregoire, S., et al. (2012). Inefficient reprogramming of fibroblasts into cardiomyocytes using gata4, mef2c, and tbx5. Circulation Research, 111, 50–55.

    Article  PubMed  CAS  Google Scholar 

  59. Srivastava, D., & Ieda, M. (2012). Critical factors for cardiac reprogramming. Circulation Research, 111, 5–8.

    Article  PubMed  CAS  Google Scholar 

  60. Bell, A. J., Jr., Fegen, D., Ward, M., & Bank, A. (2010). RD114 envelope proteins provide an effective and versatile approach to pseudotype lentiviral vectors. Experimental Biology & Medical (Maywood), 235, 1269–1276.

    Article  CAS  Google Scholar 

  61. Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2, 3081–3089.

    Article  PubMed  CAS  Google Scholar 

  62. Carey, B. W., Markoulaki, S., Hanna, J. H., Faddah, D. A., Buganim, Y., Kim, J., et al. (2011). Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell, 9, 588–598.

    Article  PubMed  CAS  Google Scholar 

  63. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.

    Article  PubMed  Google Scholar 

  64. Yoshida, Y., & Yamanaka, S. (2011). iPS cells: a source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 50, 327–332.

    Article  PubMed  CAS  Google Scholar 

  65. Blum, B., & Benvenisty, N. (2008). The tumorigenicity of human embryonic stem cells. Advances in Cancer Research, 100, 133–158.

    Article  PubMed  Google Scholar 

  66. Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K., & Murry, C. E. (2001). Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology, 33, 907–921.

    Article  PubMed  CAS  Google Scholar 

  67. Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481, 295–305.

    Article  PubMed  CAS  Google Scholar 

  68. Matsa, E., & Denning, C. (2012). In vitro uses of human pluripotent stem cell-derived cardiomyocytes. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-012-9376-5.

Download references

Acknowledgments

The authors are grateful to members of the Ieda laboratory for critical discussions and comments on the manuscript. The authors apologize to other authors whose work has not been cited due to space limitations. M.I. was supported by research grants from JST CREST, JSPS, Banyu Life Science, The Uehara Memorial Foundation, Japan Research Foundation for Clinical Pharmacology, and SENSHIN Medical Research Foundation.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ieda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagawa, K., Ieda, M. Direct Reprogramming of Mouse Fibroblasts into Cardiac Myocytes. J. of Cardiovasc. Trans. Res. 6, 37–45 (2013). https://doi.org/10.1007/s12265-012-9412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9412-5

Keywords

Navigation