Skip to main content
Log in

Current Clinical Applications of Cardiac Computed Tomography

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Multi-detector row CT allows high-resolution anatomic and functional visualization of the heart. The main current clinical application is non-invasive coronary angiography after intravenous injection of contrast agent. Coronary CT angiography permits the detection of coronary artery stenoses with relatively high accuracy and especially high negative predictive value. It is therefore considered clinically useful to rule out disease and avoid invasive coronary angiography in patients with low to intermediate likelihood of disease and especially with equivocal stress test results. Of lesser clinical relevance, albeit indicated in certain patient subgroups, is the use of cardiac computed tomography for coronary calcium quantification in the context of risk stratification. Finally, the analysis of cardiac morphology and function, including the assessment of valvular disease, is possible by CT. For most of these applications, CT is only indicated if more standard techniques such as echocardiography or cardiac magnetic resonance fail. Correct patient selection as well as sufficient experience and expertise are prerequisites for the beneficial clinical application of coronary CT angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbara, S., Arbab-Zadeh, A., Callister, T. Q., Desai, M. Y., Mamuya, W., Thomson, L., et al. (2009). SCCT guidelines for performance of coronary computed tomographic angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee. Journal of Cardiovascular Computed Tomography, 3, 190–204.

    Article  PubMed  Google Scholar 

  2. Mahabadi, A. A., Achenbach, S., Burgstahler, C., Dill, T., Fischbach, R., Knez, A., et al. (2010). Working group “Cardiac CT” of the German Cardiac Society. Safety, efficacy, and indications of beta-adrenergic receptor blockade to reduce heart rate prior to coronary CT angiography. Radiology, 257, 614–623.

    Article  PubMed  Google Scholar 

  3. Hausleiter, J., Meyer, T., Hermann, F., et al. (2009). Estimated radiation dose associated with cardiac CT angiography. JAMA, 301, 500–507.

    Article  PubMed  CAS  Google Scholar 

  4. Smith-Bindman, R., Lipson, J., Marcus, R., et al. (2009). Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Int Med, 169, 2078–2086.

    Article  Google Scholar 

  5. American Cancer Society. Cancer facts & figures 2010. http://www.cancer.org/Research/CancerFactsFigures/index. Accessed 4 August 2010.

  6. Brenner, D. J., Doll, R., Goodhead, D. T., et al. (2003). Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proceedings of the National Academy of Sciences of the United States of America, 100, 13761–13766.

    Article  PubMed  CAS  Google Scholar 

  7. Achenbach, S., Marwan, M., Ropers, D., et al. (2010). Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively ECG-triggered high-pitch spiral acquisition. European Heart Journal, 31, 340–346.

    Article  PubMed  Google Scholar 

  8. Earls, J. P., Berman, E. L., Urban, B. A., et al. (2008). Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: Improved image quality and reduced radiation dose. Radiology, 246, 742–753.

    Article  PubMed  Google Scholar 

  9. Hirai, N., Horiguchi, J., Fujioka, C., et al. (2008). Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: Assessment of image quality, stenosis, and radiation dose. Radiology, 248, 424–430.

    Article  PubMed  Google Scholar 

  10. Scheffel, H., Alkadhi, H., Leschka, S., et al. (2008). Low-dose CT coronary angiography in the step-and-shoot mode: Diagnostic performance. Heart, 94, 1132–1137.

    Article  PubMed  CAS  Google Scholar 

  11. Buechel, R. R., Husmann, L., Herzog, B. A., Pazhenkottil, A. P., Nkoulou, R., Ghadri, J. R., et al. (2011). Low-dose computed tomography coronary angiography with prospective electrocardiogram triggering feasibility in a large population. Journal of the American College of Cardiology, 57, 332–336.

    Article  PubMed  Google Scholar 

  12. Gerber, T. C., Carr, J. J., Arai, A. E., et al. (2009). Ionizing radiation in cardiac imaging: A science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation, 119, 1056–1065.

    Article  PubMed  Google Scholar 

  13. Belge, B., Coche, E., Pasquet, A., et al. (2006). Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography: Comparison with cine magnetic resonance imaging. European Radiology, 16, 1424–1433.

    Article  PubMed  Google Scholar 

  14. de Graaf, F. R., Schuijf, J. D., van Velzen, J. E., et al. (2010). Assessment of global left ventricular function and volumes with 320-row multidetector computed tomography: A comparison with 2D-echocardiography. Journal of Nuclear Cardiology, 17, 225–331.

    Article  PubMed  Google Scholar 

  15. Bardo, D. M., Kachenoura, N., Newby, B., et al. (2008). Multidetector computed tomography evaluation of left ventricular volumes: Sources of error and guidelines for their minimization. Journal of Cardiovascular Computed Tomography, 2, 222–230.

    Article  PubMed  Google Scholar 

  16. Plumhans, C., Mühlenbruch, G., Rapaee, A., et al. (2008). Assessment of global right ventricular function on 64-MDCT compared with MRI. AJR. American Journal of Roentgenology, 190, 1358–1561.

    Article  PubMed  Google Scholar 

  17. Abdulla, J., Sivertsen, J., Kofoed, K. F., et al. (2009). Evaluation of aortic valve stenosis by cardiac multislice computed tomography compared with echocardiography: A systematic review and meta-analysis. The Journal of Heart Valve Disease, 18, 634–643.

    PubMed  Google Scholar 

  18. Pflederer, T., & Achenbach, S. (2010). Aortic valve stenosis: CT contributions to diagnosis and therapy. Journal of Cardiovascular Computed Tomography, 4, 355–364.

    Article  PubMed  Google Scholar 

  19. Becker, A., Leber, A., Becker, C., & Knez, A. (2008). Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. American Heart Journal, 155, 154–160.

    Article  PubMed  Google Scholar 

  20. Arad, Y., Goodman, K. J., Roth, M., et al. (2005). Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: The St. Francis Heart Study. Journal of the American College of Cardiology, 46, 158–165.

    Article  PubMed  CAS  Google Scholar 

  21. Erbel, R., Möhlenkamp, S., Moebus, S., Schmermund, A., Lehmann, N., Stang, A., et al. (2010). Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: The Heinz Nixdorf Recall study. Journal of the American College of Cardiology, 56, 1397–1406.

    Article  PubMed  Google Scholar 

  22. Miller, J. M., Rochitte, C. E., Dewey, M., Arbab-Zadeh, A., Niinuma, H., Gottlieb, I., et al. (2008). Diagnostic performance of coronary angiography by 64-row CT. The New England Journal of Medicine, 359, 2324–2336.

    Article  PubMed  CAS  Google Scholar 

  23. Rubinshtein, R., Halon, D. A., Gaspar, T., Jaffe, R., Karkabi, B., Flugelman, M. Y., et al. (2007). Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation, 115, 1762–1768.

    Article  PubMed  Google Scholar 

  24. Hadamitzky, M., Distler, R., Meyer, T., Hein, F., Kastrati, A., Martinoff, S., et al. (2011). Prognostic value of coronary computed tomographic angiography in comparison with calcium scoring and clinical risk scores. Circ Cardiovasc Imaging, 4, 16–23.

    Article  PubMed  Google Scholar 

  25. Detrano, R., Guerci, A. D., Carr, J. J., et al. (2008). Coronary calcium as a predictor of coronary events in four racial or ethnic groups. The New England Journal of Medicine, 358, 1336–1345.

    Article  PubMed  CAS  Google Scholar 

  26. Folsom, A. R., Kronmal, R. A., Detrano, R. C., et al. (2008). Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: The Multi-Ethnic Study of Atherosclerosis (MESA). Archives of Internal Medicine, 168, 1333–1339.

    Article  PubMed  Google Scholar 

  27. Dewey, M., Vavere, A. L., Arbab-Zadeh, A., et al. (2010). Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenoses: CORE-64 Multicenter International Trial. AJR. American Journal of Roentgenology, 194, 93–102.

    Article  PubMed  Google Scholar 

  28. Budoff, M. J., Dowe, D., Jollis, J. G., Gitter, M., Sutherland, J., Halamert, E., et al. (2008). Diagnostic performance of 64-multidetector-row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease. Journal of the American College of Cardiology, 52, 1724–1732.

    Article  PubMed  Google Scholar 

  29. Meijboom, W. B., Meijs, M. F., Schuijf, J. D., Cramer, M. J., Mollet, N. R., van Mieghem, C. A., et al. (2008). Diagnostic accuracy of 64-slice computed tomography coronary angiography: A prospective, multicenter, multivendor study. Journal of the American College of Cardiology, 52, 2135–2144.

    Article  PubMed  Google Scholar 

  30. Danciu, S. C., Herrera, C. J., Stecy, P. J., Carell, E., Saltiel, F., & Hines, J. L. (2007). Usefulness of multislice computed tomographic coronary angiography to identify patients with abnormal myocardial perfusion stress in whom diagnostic catheterization may be safely avoided. The American Journal of Cardiology, 100, 1605–1608.

    Article  PubMed  Google Scholar 

  31. Gilard, M., Le Gal, G., Cornily, J. C., Vinsonneau, U., Joret, C., Pennec, P. Y., et al. (2007). Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomography findings. A prospective management outcome study. Archives of Internal Medicine, 165, 1686–1689.

    Article  Google Scholar 

  32. Hadamitzky, M., Freissmuth, B., Meyer, T., Hein, F., Kastrati, A., Martinoff, S., et al. (2009). Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging, 2, 404–411.

    Article  PubMed  Google Scholar 

  33. Hollander, J. E., Chang, A. M., Shofer, F. S., Collin, M. J., Walsh, K. M., McCusker, C. M., et al. (2009). One-year outcomes following coronary computerized tomographic angiography for evaluation of emergency department patients with potential acute coronary syndrome. Academic Emergency Medicine, 16, 693–698.

    Article  PubMed  Google Scholar 

  34. Chow, B. J., Wells, G. A., Chen, L., Yam, Y., Galiwango, P., Abraham, A., et al. (2010). Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. Journal of the American College of Cardiology, 55, 1017–1028.

    Article  PubMed  Google Scholar 

  35. Taylor, A. J., Cerqueira, M., Hodgson, J. M., Mark, D., Min, J., O'Gara, P., et al. (2010). Appropriate use criteria for cardiac computed tomography. Journal of Cardiovascular Computed Tomography, 4(407), e1–e33.

    Article  PubMed  Google Scholar 

  36. Schroeder, S., Achenbach, S., Bengel, F., Burgstahler, C., Cademartiri, F., de Feyter, P., et al. (2008). Cardiac computed tomography: Indications, applications, limitations, and training requirements: Report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. European Heart Journal, 29, 531–556.

    Article  PubMed  Google Scholar 

  37. Wykrzykowska, J. J., Arbab-Zadeh, A., Godoy, G., et al. (2010). Assessment of in-stent restenosis using 64-MDCT: Analysis of the CORE-64 Multicenter International Trial. AJR. American Journal of Roentgenology, 194, 85–92.

    Article  PubMed  Google Scholar 

  38. Min, J. K., Shaw, L. J., Devereux, R. B., et al. (2007). Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. Journal of the American College of Cardiology, 50, 1161–1170.

    Article  PubMed  Google Scholar 

  39. Ostrom, M. P., Gopal, A., Ahmadi, N., et al. (2008). Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. Journal of the American College of Cardiology, 52, 1335–1343.

    Article  PubMed  Google Scholar 

  40. Choi, E. K., Choi, S. I., Rivera, J. J., Nasir, K., Chang, S. A., Chun, E. J., et al. (2008). Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. Journal of the American College of Cardiology, 52, 357–365.

    Article  PubMed  Google Scholar 

  41. Hadamitzky, M., Meyer, T., Hein, F., Bischoff, B., Martinoff, S., Schömig, A., et al. (2010). Prognostic value of coronary computed tomographic angiography in asymptomatic patients. The American Journal of Cardiology, 105, 1746–1751.

    Article  PubMed  Google Scholar 

  42. Hulten, E. A., Carbonaro, S., Petrillo, S. P., Mitchell, J. D., & Villines, T. C. (2011). Prognostic value of cardiac computed tomography angiography. A systematic review and meta-analysis. Journal of the American College of Cardiology., 57, 1237–1247.

    Article  PubMed  Google Scholar 

  43. Motoyama, S., Sarai, M., Harigaya, H., Anno, H., Inoue, K., Hara, T., et al. (2009). Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. Journal of the American College of Cardiology, 54, 49–57.

    Article  PubMed  Google Scholar 

  44. Mollet, N. R., Hoye, A., Lemos, P. A., Cademartiri, F., Sianos, G., McFadden, E. P., et al. (2005). Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. The American Journal of Cardiology, 95, 240–243.

    Article  PubMed  Google Scholar 

  45. Ehara, M., Terashima, M., Kawai, M., Matsushita, S., Tsuchikane, E., Kinoshita, Y., et al. (2009). Impact of multislice computed tomography to estimate difficulty in wire crossing in percutaneous coronary intervention for chronic total occlusion. The Journal of Invasive Cardiology, 21, 575–582.

    PubMed  Google Scholar 

  46. Soon, K. H., Cox, N., Wong, A., Chaitowitz, I., Macgregor, L., Santos, P. T., et al. (2007). CT coronary angiography predicts the outcome of percutaneous coronary intervention of chronic total occlusion. Journal of Interventional Cardiology, 20, 359–366.

    Article  PubMed  Google Scholar 

  47. Delgado, V., Ng, A. C., van de Veire, N. R., et al. (2010). Transcatheter aortic valve implantation: Role of multi-detector row computed tomography to evaluate prosthesis positioning and deployment in relation to valve function. European Heart Journal, 31, 1114–1123.

    Article  PubMed  Google Scholar 

  48. Blanke, P., Euringer, W., Baumann, T., Reinöhl, J., Schlensak, C., Langer, M., et al. (2010). Combined assessment of aortic root anatomy and aortoiliac vasculature with dual-source CT as a screening tool in patients evaluated for transcatheter aortic valve implantation. AJR. American Journal of Roentgenology, 195, 872–881.

    Article  PubMed  Google Scholar 

  49. Tops, L. F., Wood, D. A., Delgado, V., Schuijf, J. D., Mayo, J. R., Pasupati, S., et al. (2008). Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging, 1, 321–330.

    Article  PubMed  Google Scholar 

  50. Wood, D. A., Tops, L. F., Mayo, J. R., Pasupati, S., Schalij, M. J., Humphries, K., et al. (2009). Role of multislice computed tomography in transcatheter aortic valve replacement. The American Journal of Cardiology, 103, 1295–1301.

    Article  PubMed  Google Scholar 

  51. Gurvitch, R., Wood, D. A., Leipsic, J., Tay, E., Johnson, M., Ye, J., et al. (2010). Multislice computed tomography for prediction of optimal angiographic deployment projections during transcatheter aortic valve implantation. JACC Cardiovasc Interv, 3, 1157–1165.

    Article  PubMed  Google Scholar 

  52. Kurra, V., Kapadia, S. R., Tuzcu, E. M., Halliburton, S. S., Svensson, L., Roselli, E. E., et al. (2010). Pre-procedural imaging of aortic root orientation and dimensions: Comparison between X-ray angiographic planar imaging and 3-dimensional multidetector row computed tomography. JACC Cardiovasc Interv, 3, 105–113.

    Article  PubMed  Google Scholar 

  53. Martinek, M., Nesser, H. J., Aichinger, J., Boehm, G., & Purerfellner, H. (2007). Impact of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping on clinical outcomes, safety, and efficacy using radiofrequency ablation for atrial fibrillation. Pacing and Clinical Electrophysiology, 30, 1215–1223.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Achenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achenbach, S. Current Clinical Applications of Cardiac Computed Tomography. J. of Cardiovasc. Trans. Res. 4, 449–458 (2011). https://doi.org/10.1007/s12265-011-9278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9278-y

Keywords

Navigation