Skip to main content
Log in

Insights into Human β-Cardiac Myosin Function from Single Molecule and Single Cell Studies

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

An Erratum to this article was published on 08 December 2010

Abstract

β-Cardiac myosin is a mechanoenzyme that converts the energy from ATP hydrolysis into a mechanical force that drives contractility in muscle. Thirty percent of the point mutations that result in hypertrophic cardiomyopathy are localized to MYH7, the gene encoding human β-cardiac myosin heavy chain (β-MyHC). Force generation by myosins requires a tight and highly conserved allosteric coupling between its different protein domains. Hence, the effects of single point mutations on the force generation and kinetics of β-cardiac myosin molecules cannot be predicted directly from their location within the protein structure. Great insight would be gained from understanding the link between the functional defect in the myosin protein and the clinical phenotypes of patients expressing them. Over the last decade, several single molecule techniques have been developed to understand in detail the chemomechanical cycle of different myosins. In this review, we highlight the single molecule techniques that can be used to assess the effect of point mutations on β-cardiac myosin function. Recent bioengineering advances have enabled the micromanipulation of single cardiomyocyte cells to characterize their force–length dynamics. Here, we briefly review single cell micromanipulation as an approach to determine the effect of β-MyHC mutations on cardiomyocyte function. Finally, we examine the technical challenges specific to studying β-cardiac myosin function both using single molecule and single cell approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maron, B. J., Gardin, J. M., Flack, J. M., Gidding, S. S., Kurosaki, T. T., & Bild, D. E. (1995). Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation, 92(4), 785–789.

    PubMed  CAS  Google Scholar 

  2. Maron, B. J. (2002). Hypertrophic cardiomyopathy: A systematic review. JAMA, 287(10), 1308–1320.

    Article  PubMed  Google Scholar 

  3. Liew, C. C., & Dzau, V. J. (2004). Molecular genetics and genomics of heart failure. Nature Reviews. Genetics, 5(11), 811–825.

    Article  PubMed  CAS  Google Scholar 

  4. Ramaraj, R. (2008). Hypertrophic cardiomyopathy: etiology, diagnosis, and treatment. Cardiology in Review, 16(4), 172–180.

    Article  PubMed  Google Scholar 

  5. Kron, S. J., & Spudich, J. A. (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences of the United States of America, 83(17), 6272–6276.

    Article  PubMed  CAS  Google Scholar 

  6. Sheetz, M. P., & Spudich, J. A. (1983). Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature, 303(5912), 31–35.

    Article  PubMed  CAS  Google Scholar 

  7. Spudich, J. A., Kron, S. J., & Sheetz, M. P. (1985). Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature, 315(6020), 584–586.

    Article  PubMed  CAS  Google Scholar 

  8. Lymn, R. W. (1979). Kinetic analysis of myosin and actomyosin atpase. Annual Review of Biophysics and Bioengineering, 8, 145–163.

    Article  PubMed  CAS  Google Scholar 

  9. Uyeda, T. Q., Kron, S. J., & Spudich, J. A. (1990). Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. Journal of Molecular Biology, 214(3), 699–710.

    Article  PubMed  CAS  Google Scholar 

  10. Toyoshima, Y. Y., Kron, S. J., & Spudich, J. A. (1990). The myosin step size: Measurement of the unit displacement per ATP hydrolyzed in an in vitro assay. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7130–7134.

    Article  PubMed  CAS  Google Scholar 

  11. Ishijima, A., Harada, Y., Kojima, H., Funatsu, T., Higuchi, H., & Yanagida, T. (1994). Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochemical and Biophysical Research Communications, 199(2), 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  12. Yanagida, T., Arata, T., & Oosawa, F. (1985). Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature, 316(6026), 366–369.

    Article  PubMed  CAS  Google Scholar 

  13. Finer, J. T., Simmons, R. M., & Spudich, J. A. (1994). Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature, 368(6467), 113–119.

    Article  PubMed  CAS  Google Scholar 

  14. Wolenski, J. S., Cheney, R. E., Forscher, P., & Mooseker, M. S. (1993). In vitro motilities of the unconventional myosins, brush border myosin-I, and chick brain myosin-V exhibit assay-dependent differences in velocity. Journal of Experimental Zoology, 267(1), 33–39.

    Article  PubMed  CAS  Google Scholar 

  15. Bryant, Z., Altman, D., & Spudich, J. A. (2007). The power stroke of myosin VI and the basis of reverse directionality. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 772–777.

    Article  PubMed  CAS  Google Scholar 

  16. Post, P. L., Tyska, M. J., O'Connell, C. B., Johung, K., Hayward, A., & Mooseker, M. S. (2002). Myosin-IXb is a single-headed and processive motor. Journal of Biological Chemistry, 277(14), 11679–11683.

    Article  PubMed  CAS  Google Scholar 

  17. Homma, K., Saito, J., Ikebe, R., & Ikebe, M. (2001). Motor function and regulation of myosin X. Journal of Biological Chemistry, 276(36), 34348–34354.

    Article  PubMed  CAS  Google Scholar 

  18. Yamashita, H., Sugiura, S., Serizawa, T., Sugimoto, T., Iizuka, M., Katayama, E., et al. (1992). Sliding velocity of isolated rabbit cardiac myosin correlates with isozyme distribution. American Journal of Physiology, 263(2 Pt 2), H464–H472.

    PubMed  CAS  Google Scholar 

  19. Yamashita, H., Sugiura, S., Sata, M., Serizawa, T., Iizuka, M., Shimmen, T., et al. (1993). Depressed sliding velocity of isolated cardiac myosin from cardiomyopathic hamsters: evidence for an alteration in mechanical interaction of actomyosin. Molecular and Cellular Biochemistry, 119(1–2), 79–88.

    Article  PubMed  CAS  Google Scholar 

  20. Barany, M., Conover, T. E., Schliselfeld, L. H., Gaetjens, E., & Goffart, M. (1967). Relation of properties of isolated myosin to those of intact muscles of the cat and sloth. European Journal of Biochemistry, 2(2), 156–164.

    Article  PubMed  CAS  Google Scholar 

  21. Cuda, G., Fananapazir, L., Zhu, W. S., Sellers, J. R., & Epstein, N. D. (1993). Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. Journal of Clinical Investigation, 91(6), 2861–2865.

    Article  PubMed  CAS  Google Scholar 

  22. Epstein, N. D., Fananapazir, L., Lin, H. J., Mulvihill, J., White, R., Lalouel, J. M., et al. (1992). Evidence of genetic heterogeneity in five kindreds with familial hypertrophic cardiomyopathy. Circulation, 85(2), 635–647.

    PubMed  CAS  Google Scholar 

  23. Cuda, G., Fananapazir, L., Epstein, N. D., & Sellers, J. R. (1997). The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. Journal of Muscle Research and Cell Motility, 18(3), 275–283.

    Article  PubMed  CAS  Google Scholar 

  24. Palmiter, K. A., Tyska, M. J., Haeberle, J. R., Alpert, N. R., Fananapazir, L., & Warshaw, D. M. (2000). R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. Journal of Muscle Research and Cell Motility, 21(7), 609–620.

    Article  PubMed  CAS  Google Scholar 

  25. Palmer, B. M., Fishbaugher, D. E., Schmitt, J. P., Wang, Y., Alpert, N. R., Seidman, C. E., et al. (2004). Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 287(1), H91–H99.

    Article  PubMed  CAS  Google Scholar 

  26. Keller, D. I., Coirault, C., Rau, T., Cheav, T., Weyand, M., Amann, K., et al. (2004). Human homozygous R403W mutant cardiac myosin presents disproportionate enhancement of mechanical and enzymatic properties. Journal of Molecular and Cellular Cardiology, 36(3), 355–362.

    Article  PubMed  CAS  Google Scholar 

  27. Sweeney, H. L., Straceski, A. J., Leinwand, L. A., Tikunov, B. A., & Faust, L. (1994). Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. Journal of Biological Chemistry, 269(3), 1603–1605.

    PubMed  CAS  Google Scholar 

  28. Malmqvist, U. P., Aronshtam, A., & Lowey, S. (2004). Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties. Biochemistry, 43(47), 15058–15065.

    Article  PubMed  CAS  Google Scholar 

  29. Shaw, T., Elliott, P., & McKenna, W. J. (2002). Dilated cardiomyopathy: a genetically heterogeneous disease. Lancet, 360(9334), 654–655.

    Article  PubMed  Google Scholar 

  30. Schmitt, J. P., Debold, E. P., Ahmad, F., Armstrong, A., Frederico, A., Conner, D. A., et al. (2006). Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14525–14530.

    Article  PubMed  CAS  Google Scholar 

  31. Kurabayashi, M., Tsuchimochi, H., Komuro, I., Takaku, F., & Yazaki, Y. (1988). Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. Journal of Clinical Investigation, 82(2), 524–531.

    Article  PubMed  CAS  Google Scholar 

  32. Lowey, S., Lesko, L. M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone. Journal of Biological Chemistry, 283(29), 20579–20589.

    Article  PubMed  CAS  Google Scholar 

  33. Ng, W. A., Grupp, I. L., Subramaniam, A., & Robbins, J. (1991). Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circulation Research, 68(6), 1742–1750.

    PubMed  CAS  Google Scholar 

  34. Umeda, P. K., Darling, D. S., Kennedy, J. M., Jakovcic, S., & Zak, R. (1987). Control of myosin heavy chain expression in cardiac hypertrophy. American Journal of Cardiology, 59(2), 49A–55A.

    Article  PubMed  CAS  Google Scholar 

  35. Morkin, E. (2000). Control of cardiac myosin heavy chain gene expression. Microscopy Research and Technique, 50(6), 522–531.

    Article  PubMed  CAS  Google Scholar 

  36. De La Cruz, E. M., & Ostap, E. M. (2009). Kinetic and equilibrium analysis of the myosin ATPase. Methods in Enzymology, 455, 157–192.

    Article  CAS  Google Scholar 

  37. Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F., & Spudich, J. A. (2005). Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1419–1423.

    Article  PubMed  CAS  Google Scholar 

  38. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M., & Sweeney, H. L. (1999). The kinetic mechanism of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13726–13731.

    Article  Google Scholar 

  39. Dunn, A. R., & Spudich, J. A. (2007). Dynamics of the unbound head during myosin V processive translocation. Nature Structural & Molecular Biology, 14(3), 246–248.

    Article  CAS  Google Scholar 

  40. Sakamoto, T., Webb, M. R., Forgacs, E., White, H. D., & Sellers, J. R. (2008). Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature, 455(7209), 128–132.

    Article  PubMed  CAS  Google Scholar 

  41. Yildiz, A., & Selvin, P. R. (2005). Fluorescence imaging with one nanometer accuracy: Application to molecular motors. Accounts of Chemical Research, 38(7), 574–582.

    Article  PubMed  CAS  Google Scholar 

  42. Trybus, K. M. (2008). Myosin V from head to tail. Cellular and Molecular Life Sciences, 65(9), 1378–1389.

    Article  PubMed  CAS  Google Scholar 

  43. Marston, S. B., & Taylor, E. W. (1980). Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. Journal of Molecular Biology, 139(4), 573–600.

    Article  PubMed  CAS  Google Scholar 

  44. Spudich, J. A. (1974). Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum. Journal of Biological Chemistry, 249(18), 6013–6020.

    PubMed  CAS  Google Scholar 

  45. Cheney, R. E., O'Shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J. S., Espreafico, E. M., et al. (1993). Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell, 75(1), 13–23.

    PubMed  CAS  Google Scholar 

  46. Huxley, H. E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. Journal of Molecular Biology, 7, 281–308.

    Article  CAS  Google Scholar 

  47. Bagshaw, C. (1993). Muscle contraction (2nd ed.). London: Chapman & Hall.

    Google Scholar 

  48. Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., & Cheney, R. E. (1999). Myosin-V is a processive actin-based motor. Nature, 400(6744), 590–593.

    Article  PubMed  CAS  Google Scholar 

  49. Spudich, J. A. (1990). Optical trapping: motor molecules in motion. Nature, 348(6299), 284–285.

    Article  PubMed  CAS  Google Scholar 

  50. Sousa, A. D., & Cheney, R. E. (2005). Myosin-X: A molecular motor at the cell's fingertips. Trends in Cell Biology, 15(10), 533–539.

    Article  PubMed  CAS  Google Scholar 

  51. Rock, R. S., Rice, S. E., Wells, A. L., Purcell, T. J., Spudich, J. A., & Sweeney, H. L. (2001). Myosin VI is a processive motor with a large step size. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13655–13659.

    Article  PubMed  CAS  Google Scholar 

  52. Okten, Z., Churchman, L. S., Rock, R. S., & Spudich, J. A. (2004). Myosin VI walks hand-over-hand along actin. Nature Structural & Molecular Biology, 11(9), 884–887.

    Article  CAS  Google Scholar 

  53. Kerber, M. L., Jacobs, D. T., Campagnola, L., Dunn, B. D., Yin, T., Sousa, A. D., et al. (2009). A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level. Current Biology, 19(11), 967–973.

    Article  PubMed  CAS  Google Scholar 

  54. Altman, D., Sweeney, H. L., & Spudich, J. A. (2004). The mechanism of myosin VI translocation and its load-induced anchoring. Cell, 116(5), 737–749.

    Article  PubMed  CAS  Google Scholar 

  55. Sellers, J. R., & Veigel, C. (2006). Walking with myosin V. Current Opinion in Cell Biology, 18(1), 68–73.

    Article  PubMed  CAS  Google Scholar 

  56. Kishino, A., & Yanagida, T. (1988). Force measurements by micromanipulation of a single actin filament by glass needles. Nature, 334(6177), 74–76.

    Article  PubMed  CAS  Google Scholar 

  57. VanBuren, P., Harris, D. E., Alpert, N. R., & Warshaw, D. M. (1995). Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circulation Research, 77(2), 439–444.

    PubMed  CAS  Google Scholar 

  58. Rice, S. E., Purcell, T. J., & Spudich, J. A. (2003). Building and using optical traps to study properties of molecular motors. Methods in Enzymology, 361, 112–133.

    Article  PubMed  CAS  Google Scholar 

  59. Huxley, H. E. (1969). The mechanism of muscular contraction. Science, 164(886), 1356–1365.

    Article  PubMed  CAS  Google Scholar 

  60. Palmiter, K. A., Tyska, M. J., Dupuis, D. E., Alpert, N. R., & Warshaw, D. M. (1999). Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. Journal of Physiology, 519(Pt 3), 669–678.

    Article  PubMed  CAS  Google Scholar 

  61. Tyska, M. J., Hayes, E., Giewat, M., Seidman, C. E., Seidman, J. G., & Warshaw, D. M. (2000). Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circulation Research, 86(7), 737–744.

    PubMed  CAS  Google Scholar 

  62. Yamashita, H., Tyska, M. J., Warshaw, D. M., Lowey, S., & Trybus, K. M. (2000). Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Journal of Biological Chemistry, 275(36), 28045–28052.

    PubMed  CAS  Google Scholar 

  63. Debold, E. P., Schmitt, J. P., Patlak, J. B., Beck, S. E., Moore, J. R., Seidman, J. G., et al. (2007). Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H284–H291.

    Article  PubMed  CAS  Google Scholar 

  64. de Tombe, P. P., & Stienen, G. J. (1995). Protein kinase A does not alter economy of force maintenance in skinned rat cardiac trabeculae. Circulation Research, 76(5), 734–741.

    PubMed  Google Scholar 

  65. Vahebi, S., Ota, A., Li, M., Warren, C. M., de Tombe, P. P., Wang, Y., et al. (2007). p38-MAPK induced dephosphorylation of alpha-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circulation Research, 100(3), 408–415.

    Article  PubMed  CAS  Google Scholar 

  66. Iribe, G., Helmes, M., & Kohl, P. (2007). Force–length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. American Journal of Physiology. Heart and Circulatory Physiology, 292(3), H1487–H1497.

    Article  PubMed  CAS  Google Scholar 

  67. Sugiura, S., Nishimura, S., Yasuda, S., Hosoya, Y., & Katoh, K. (2006). Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes. Natural Protocol, 1(3), 1453–1457.

    Article  CAS  Google Scholar 

  68. Lionne, C., Iorga, B., Candau, R., & Travers, F. (2003). Why choose myofibrils to study muscle myosin ATPase? Journal of Muscle Research and Cell Motility, 24(2–3), 139–148.

    Article  PubMed  CAS  Google Scholar 

  69. Telley, I. A., & Denoth, J. (2007). Sarcomere dynamics during muscular contraction and their implications to muscle function. Journal of Muscle Research and Cell Motility, 28(1), 89–104.

    Article  PubMed  Google Scholar 

  70. Cooke, R. (1997). Actomyosin interaction in striated muscle. Physiological Reviews, 77(3), 671–697.

    PubMed  CAS  Google Scholar 

  71. Tarr, M., Trank, J. W., Leiffer, P., & Shepherd, N. (1979). Sarcomere length-resting tension relation in single frog atrial cardiac cells. Circulation Research, 45(4), 554–559.

    PubMed  CAS  Google Scholar 

  72. Brady, A. J., Tan, S. T., & Ricchiuti, N. V. (1979). Contractile force measured in unskinned isolated adult rat heart fibres. Nature, 282(5740), 728–729.

    Article  PubMed  CAS  Google Scholar 

  73. Le Guennec, J. Y., Peineau, N., Argibay, J. A., Mongo, K. G., & Garnier, D. (1990). A new method of attachment of isolated mammalian ventricular myocytes for tension recording: Length dependence of passive and active tension. Journal of Molecular and Cellular Cardiology, 22(10), 1083–1093.

    Article  PubMed  Google Scholar 

  74. Nishimura, S., Kawai, Y., Nakajima, T., Hosoya, Y., Fujita, H., Katoh, M., et al. (2006). Membrane potential of rat ventricular myocytes responds to axial stretch in phase, amplitude and speed-dependent manners. Cardiovascular Research, 72(3), 403–411.

    Article  PubMed  CAS  Google Scholar 

  75. Nishimura, S., Nagai, S., Katoh, M., Yamashita, H., Saeki, Y., Okada, J., et al. (2006). Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circulation Research, 98(1), 81–87.

    Article  PubMed  CAS  Google Scholar 

  76. Nishimura, S., Nagai, S., Sata, M., Katoh, M., Yamashita, H., Saeki, Y., et al. (2006). Expression of green fluorescent protein impairs the force-generating ability of isolated rat ventricular cardiomyocytes. Molecular and Cellular Biochemistry, 286(1–2), 59–65.

    Article  PubMed  CAS  Google Scholar 

  77. Nishimura, S., Seo, K., Nagasaki, M., Hosoya, Y., Yamashita, H., Fujita, H., et al. (2008). Responses of single-ventricular myocytes to dynamic axial stretching. Progress in Biophysics and Molecular Biology, 97(2–3), 282–297.

    Article  PubMed  CAS  Google Scholar 

  78. Nishimura, S., Yamashita, H., Katoh, M., Yamada, K. P., Sunagawa, K., Saeki, Y., et al. (2005). Contractile dysfunction of cardiomyopathic hamster myocytes is pronounced under high load conditions. Journal of Molecular and Cellular Cardiology, 39(2), 231–239.

    Article  PubMed  CAS  Google Scholar 

  79. Nishimura, S., Yasuda, S., Katoh, M., Yamada, K. P., Yamashita, H., Saeki, Y., et al. (2004). Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. American Journal of Physiology. Heart and Circulatory Physiology, 287(1), H196–H202.

    Article  PubMed  CAS  Google Scholar 

  80. Herron, T. J., Devaney, E. J., & Metzger, J. M. (2008). Modulation of cardiac performance by motor protein gene transfer. Annals of the New York Academy of Sciences, 1123, 96–104.

    Article  PubMed  CAS  Google Scholar 

  81. Herron, T. J., Korte, F. S., & McDonald, K. S. (2001). Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. American Journal of Physiology. Heart and Circulatory Physiology, 281(3), H1217–H1222.

    PubMed  CAS  Google Scholar 

  82. Tang, Y. D., Kuzman, J. A., Said, S., Anderson, B. E., Wang, X., & Gerdes, A. M. (2005). Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation, 112(20), 3122–3130.

    Article  PubMed  CAS  Google Scholar 

  83. Herron, T. J., Vandenboom, R., Fomicheva, E., Mundada, L., Edwards, T., & Metzger, J. M. (2007). Calcium-independent negative inotropy by beta-myosin heavy chain gene transfer in cardiac myocytes. Circulation Research, 100(8), 1182–1190.

    Article  PubMed  CAS  Google Scholar 

  84. Yasuda, S., Coutu, P., Sadayappan, S., Robbins, J., & Metzger, J. M. (2007). Cardiac transgenic and gene transfer strategies converge to support an important role for troponin I in regulating relaxation in cardiac myocytes. Circulation Research, 101(4), 377–386.

    Article  PubMed  CAS  Google Scholar 

  85. Marian, A. J., Yu, Q. T., Mann, D. L., Graham, F. L., & Roberts, R. (1995). Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline cardiac myocytes. Circulation Research, 77(1), 98–106.

    PubMed  CAS  Google Scholar 

  86. Wang, Q., Moncman, C. L., & Winkelmann, D. A. (2003). Mutations in the motor domain modulate myosin activity and myofibril organization. Journal of Cell Science, 116(Pt 20), 4227–4238.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Institute for Stem Cell Biology and Regenerative Medicine (inSTEM) and the National Center for Biological Sciences, Bangalore, India, for funding a symposium on Cardiac and Cardiovascular disorders which catalyzed this collaborative review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Spudich.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12265-010-9251-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivaramakrishnan, S., Ashley, E., Leinwand, L. et al. Insights into Human β-Cardiac Myosin Function from Single Molecule and Single Cell Studies. J. of Cardiovasc. Trans. Res. 2, 426–440 (2009). https://doi.org/10.1007/s12265-009-9129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9129-2

Keywords

Navigation